A Flash Crowd (FC) event occurs when network traffic increases suddenly due to a specific reason (e.g. e-commerce sale). Despite its legitimacy, this kind of situation usually decreases the network resource performance. Furthermore, attackers may simulate FC situations to introduce undetected attacks, such as Distributed Denial of Service (DDoS), since it is very difficult to distinguish between legitimate and malicious data flows. To differentiate malicious and legitimate traffic we propose applying zero inflated count data models in conjunction with the Correlation Coefficient Flow (CCF) method – a well-known method used in FC situations. Our results were satisfactory and improve the accuracy of CCF method. Furthermore, since the environment toggles between normal and FC situations, our method has the advantage of working in both situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.