The Corsi block-tapping task is a widely used test to assess visuo-spatial working memory. The test is traditionally administered using nine square blocks positioned on a wooden board, but numerous digital versions have been developed. In this study, we tested one-hundred and seven participants divided into two age groups (18–30 and over 50) in forward, backward and supraspan-forward conditions with eCorsi, a tablet version of the Corsi task. Compared to the traditional physical board, eCorsi has several advantages, including: simple installation, set-up, and use; considerably increased accuracy in presentation timing, automatic measures of span and reaction times, in both the forward and backward response modalities. Results showed that average span and error rates were essentially analogous to the ones obtained in the main standardization studies, which have used the original physical version of the Corsi test. Furthermore, timing results provide new indications about the mechanisms underlying spatial sequence processing, suggesting that the subject's response is not planned during sequence presentation, but between the end of the presentation and the beginning of the response.
The aim of the present study was to assess the role of empathy in mediating the association between difficulties in emotion regulation and hostility. Three hundred and sixty young Italian adults (220 women and 140 men) were enrolled in the study. Psychopathological assessments included the Difficulties in Emotion Regulation Scale (DERS), the Interpersonal Reactivity Index and the Buss–Durkee Hostility Inventory (BDHI). Perspective taking (PT) and Personal distress (PD) are significantly associated with both DERS total score and BDHI total score. A mediational model analyzing the direct and indirect effects of DERS on BDHI through the mediating role of PT and PD showed that the relation between DERS and BDHI was partially mediated by PT total score (b = 0.16; se = 0.01; p = 0.02). Taken together our findings support the possibility that PT skills could play a crucial role in inhibiting hostility behaviors.
Crossmodal correspondences have often been demonstrated using congruency effects between pairs of stimuli in different sensory modalities that vary along separate dimensions. To date, however, it is still unclear the extent to which these correspondences are relative versus absolute in nature: that is, whether they result from pre-defined values that rigidly link the two dimensions or rather result from flexible values related to the previous occurrence of the crossmodal stimuli. Here, we investigated this issue in a speeded classification task featuring the correspondence between auditory pitch and visual size (e.g., congruent correspondence between high pitch/small disc and low pitch/large disc). Participants classified the size of the visual stimuli (large vs. small) while hearing concurrent high- or low-pitched task-irrelevant sounds. On some trials, visual stimuli were paired instead with "intermediate" pitch, that could be interpreted differently according to the auditory stimulus on the preceding trial (i.e., as "lower" following the presentation of a high pitch tone, but as "higher" following the presentation of a low pitch tone). Performance on sequence-congruent trials (e.g., when a small disc paired with the intermediate-pitched tone was preceded by a low pitch tone) was compared to sequence-incongruent trials (e.g., when a small disc paired with the intermediate-pitch tone was by a high-pitched tone). The results revealed faster classification responses on sequence-congruent than on sequence-incongruent trials. This demonstrates that the effect of the pitch/size correspondence is relative in nature, and subjected to trial-by-trial interpretation of the stimulus pair.
The n-back task is widely used to investigate the neural basis of Working Memory (WM) processes. The principal aim of this study was to explore and compare the EEG power spectra during two n-back tests with different levels of difficulty (1-back vs. 3-back). Fourteen healthy subjects were enrolled (seven men and seven women, mean age 31.21 ± 7.05 years, range: 23–48). EEG was recorded while performing the N-back test, by means of 19 surface electrodes referred to joint mastoids. EEG analysis were conducted by means of the standardized Low Resolution brain Electric Tomography (sLORETA) software. The statistical comparison between EEG power spectra in the two conditions was performed using paired t-statistics on the coherence values after Fisher's z transformation available in the LORETA program package. The frequency bands considered were: delta (0.5–4 Hz); theta (4.5–7.5 Hz); alpha (8–12.5 Hz); beta (13–30 Hz); gamma (30.5–100 Hz). Significant changes occurred in the delta band: in the 3-back condition an increased delta power was localized in a brain region corresponding to the Brodmann Area (BA) 28 in the left posterior entorhinal cortex (T = 3.112; p < 0.05) and in the BA 35 in the left perirhinal cortex in the parahippocampal gyrus (T = 2.876; p < 0.05). No significant differences were observed in the right hemisphere and in the alpha, theta, beta, and gamma frequency bands. Our results indicate that the most prominent modification induced by the increased complexity of the task occur in the mesial left temporal lobe structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.