Recent work from this laboratory demonstrated potent inhibition of apoptosis in human alveolar epithelial cells (AECs) by the angiotensin-converting enzyme inhibitor captopril [B. D. Uhal, C. Gidea, R. Bargout, A. Bifero, O. Ibarra-Sunga, M. Papp, K. Flynn, and G. Filippatos. Am. J. Physiol. 275 ( Lung Cell. Mol. Physiol. 19): L1013–L1017, 1998]. On this basis, we hypothesized that apoptosis in this cell type might be induced by angiotensin II (ANG II) through its interaction with the ANG II receptor. Purified ANG II induced dose-dependent apoptosis in both the human AEC-derived A549 cell line and in primary type II pneumocytes isolated from adult Wistar rats as detected by nuclear and chromatin morphology, caspase-3 activity, and increased binding of annexin V. Apoptosis also was induced in primary rat AECs by purified angiotensinogen. The nonselective ANG II-receptor antagonist saralasin completely abrogated both ANG II- and angiotensinogen-induced apoptosis at a concentration of 50 μg/ml. With RT-PCR, both cell types expressed the ANG II-receptor subtypes 1 and 2 and angiotensin-converting enzyme (ACE). The nonthiol ACE inhibitor lisinopril blocked apoptosis induced by angiotensinogen, but not apoptosis induced by purified ANG II. These data demonstrate the presence of a functional ANG II-dependent pathway for apoptosis in human and rat AECs and suggest a role for the ANG II receptor and ACE in the induction of AEC apoptosis in vivo.
Recent work from this laboratory demonstrated that apoptosis of pulmonary alveolar epithelial cells (AEC) in response to Fas requires angiotensin II (ANGII) generation de novo and binding to its receptor (Wang et al., 1999b, Am J Physiol Lung Cell Mol Physiol 277:L1245-L1250). These findings led us to hypothesize that a similar mechanism might be involved in the induction of AEC apoptosis by TNF-alpha. Apoptosis was detected by assessment of nuclear and chromatin morphology, increased activity of caspase 3, binding of annexin V, and by net cell loss inhibitable by the caspase inhibitor ZVAD-fmk. Purified human TNF-alpha induced dose-dependent apoptosis in primary type II pneumocytes isolated from rats or in the AEC-derived human lung carcinoma cell line A549. Apoptosis in response to TNF-alpha was inhibited in a dose-dependent manner by the nonselective ANGII receptor antagonist saralasin or by the nonthiol ACE inhibitor lisinopril; the inhibition of TNF-induced apoptosis was maximal at 50 microgram/ml saralasin (101% inhibition) and at 0.5 microgram/ml lisinopril (86% inhibition). In both cell culture models, purified TNF-alpha caused a significant increase in the mRNA for angiotensinogen (ANGEN), which was not expressed in unactivated cells. Transfection of primary cultures of rat AEC with antisense oligonucleotides against ANGEN mRNA inhibited the subsequent induction of TNF-stimulated apoptosis by 72% (P < 0.01). Exposure to TNF-alpha increased the concentration of ANGII in the serum-free extracellular medium by fivefold in A549 cell cultures and by 40-fold in primary AEC preparations; further, exposure to TNF-alpha for 40 h caused a net cell loss of 70%, which was completely abrogated by either the caspase inhibitor ZVAD-fmk, lisinopril, or saralasin. Apoptosis in response to TNF-alpha was also completely inhibited by neutralizing antibodies specific for ANGII (P < 0.01), but isotype-matched nonimmune immunoglobulins had no significant effect. These data indicate that the induction of AEC apoptosis by TNF-alpha requires a functional renin/angiotensin system (RAS) in the target cell. They also suggest that therapeutic control of AEC apoptosis in response to TNF-alpha is feasible through pharmacologic manipulation of the local RAS.
The angiotensin-converting enzyme inhibitor captopril has been shown to inhibit fibrogenesis in the lung, but the mechanisms underlying this action are unclear. Apoptosis of lung epithelial cells is believed to be involved in the pathogenesis of pulmonary fibrosis. For these reasons, we studied the effect of captopril on Fas-induced apoptosis in a human lung epithelial cell line. Monoclonal antibodies that activate the Fas receptor induced epithelial cell apoptosis as detected by chromatin condensation, nuclear fragmentation, DNA fragmentation, and increased activities of caspase-1 and -3. Apoptosis was not induced by isotype-matched nonimmune mouse immunoglobulins or nonactivating anti-Fas monoclonal antibodies. When applied simultaneously with anti-Fas antibodies, 50 ng/ml of captopril completely abrogated apoptotic indexes based on morphology, DNA fragmentation, and inducible caspase-1 activity and significantly decreased the inducible activity of caspase-3. Inhibition of apoptosis by captopril was concentration dependent, with an IC50 of 70 pg/ml. These data suggest that the inhibitory actions of captopril on pulmonary fibrosis may be related to prevention of lung epithelial cell apoptosis.
Recent work from this laboratory demonstrated that apoptosis of pulmonary alveolar epithelial cells (AEC) in response to Fas requires angiotensin II (ANGII) generation de novo and binding to its receptor (Wang et al., 1999b, Am J Physiol Lung Cell Mol Physiol 277:L1245-L1250). These findings led us to hypothesize that a similar mechanism might be involved in the induction of AEC apoptosis by TNF-alpha. Apoptosis was detected by assessment of nuclear and chromatin morphology, increased activity of caspase 3, binding of annexin V, and by net cell loss inhibitable by the caspase inhibitor ZVAD-fmk. Purified human TNF-alpha induced dose-dependent apoptosis in primary type II pneumocytes isolated from rats or in the AEC-derived human lung carcinoma cell line A549. Apoptosis in response to TNF-alpha was inhibited in a dose-dependent manner by the nonselective ANGII receptor antagonist saralasin or by the nonthiol ACE inhibitor lisinopril; the inhibition of TNF-induced apoptosis was maximal at 50 microgram/ml saralasin (101% inhibition) and at 0.5 microgram/ml lisinopril (86% inhibition). In both cell culture models, purified TNF-alpha caused a significant increase in the mRNA for angiotensinogen (ANGEN), which was not expressed in unactivated cells. Transfection of primary cultures of rat AEC with antisense oligonucleotides against ANGEN mRNA inhibited the subsequent induction of TNF-stimulated apoptosis by 72% (P < 0.01). Exposure to TNF-alpha increased the concentration of ANGII in the serum-free extracellular medium by fivefold in A549 cell cultures and by 40-fold in primary AEC preparations; further, exposure to TNF-alpha for 40 h caused a net cell loss of 70%, which was completely abrogated by either the caspase inhibitor ZVAD-fmk, lisinopril, or saralasin. Apoptosis in response to TNF-alpha was also completely inhibited by neutralizing antibodies specific for ANGII (P < 0.01), but isotype-matched nonimmune immunoglobulins had no significant effect. These data indicate that the induction of AEC apoptosis by TNF-alpha requires a functional renin/angiotensin system (RAS) in the target cell. They also suggest that therapeutic control of AEC apoptosis in response to TNF-alpha is feasible through pharmacologic manipulation of the local RAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.