Clostridium ljungdahlii
is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO
2
/H
2
and synthesis gas (CO/H
2
). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO
2
, thus combining industrial needs with sustained reduction of CO and CO
2
in the atmosphere. Sequencing the complete genome of
C. ljungdahlii
revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as
Moorella thermoacetica
or
Acetobacterium woodii
, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus,
C. ljungdahlii
can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures.
The facultative anaerobic bacterium Listeria monocytogenes encounters microaerophilic or anaerobic conditions in various environments, e.g. in soil, in decaying plant material, in food products and in the host gut. To elucidate the adaptation of Listeria monocytogenes to variations in oxygen tension, global transcription analyses using DNA microarrays were performed. In total, 139 genes were found to be transcribed differently during aerobic and anaerobic growth; 111 genes were downregulated and 28 genes were upregulated anaerobically. The oxygendependent transcription of central metabolic genes is in agreement with results from earlier physiological studies. Of those genes more strongly expressed under lower oxygen tension, 20 were knocked out individually. Growth analysis of these knock out mutants did not indicate an essential function for the respective genes during anaerobiosis. However, even if not essential, transcriptional induction of several genes might optimize the bacterial fitness of Listeria monocytogenes in anaerobic niches, e.g. during colonization of the gut. For example, expression of the anaerobically upregulated gene lmo0355, encoding a fumarate reductase a chain, supported growth on 10 mM fumarate under anaerobic but not under aerobic growth conditions. Genes essential for anaerobic growth were identified by screening a mutant library. Eleven out of 1360 investigated mutants were sensitive to anaerobiosis. All 11 mutants were interrupted in the atp locus. These results were further confirmed by phenotypic analysis of respective in-frame deletion and complementation mutants, suggesting that the generation of a proton motive force via F 1 F 0 -ATPase is essential for anaerobic proliferation of Listeria monocytogenes.
Background
Clostridium thermocellum is a paradigm for efficient cellulose degradation and a promising organism for the production of second generation biofuels. It owes its high degradation rate on cellulosic substrates to the presence of supra-molecular cellulase complexes, cellulosomes, which comprise over 70 different single enzymes assembled on protein-backbone molecules of the scaffold protein CipA.ResultsAlthough all 24 single-cellulosomal cellulases were described previously, we present the first comparative catalogue of all these enzymes together with a comprehensive analysis under identical experimental conditions, including enzyme activity, binding characteristics, substrate specificity, and product analysis. In the course of our study, we encountered four types of distinct enzymatic hydrolysis modes denoted by substrate specificity and hydrolysis product formation: (i) exo-mode cellobiohydrolases (CBH), (ii) endo-mode cellulases with no specific hydrolysis pattern, endoglucanases (EG), (iii) processive endoglucanases with cellotetraose as intermediate product (pEG4), and (iv) processive endoglucanases with cellobiose as the main product (pEG2). These modes are shown on amorphous cellulose and on model cello-oligosaccharides (with degree of polymerization DP 3 to 6). Artificial mini-cellulosomes carrying combinations of cellulases showed their highest activity when all four endoglucanase-groups were incorporated into a single complex. Such a modeled nonavalent complex (n = 9 enzymes bound to the recombinant scaffolding protein CipA) reached half of the activity of the native cellulosome. Comparative analysis of the protein architecture and structure revealed characteristics that play a role in product formation and enzyme processivity.ConclusionsThe identification of a new endoglucanase type expands the list of known cellulase functions present in the cellulosome. Our study shows that the variety of processivities in the enzyme complex is a key enabler of its high cellulolytic efficiency. The observed synergistic effect may pave the way for a better understanding of the enzymatic interactions and the design of more active lignocellulose-degrading cellulase cocktails in the future.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-017-0928-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.