More than 100 million individuals worldwide are exposed to arsenic-contaminated water, making the investigation of arsenic mobility in aquatic systems of utmost importance. Iron (hydr)oxides play a key role in preventing arsenic release in aquifers and soils due to their strong arsenic sorption and are even used to remove arsenic in water treatment. Neutrophilic Fe(II)-oxidizing bacteria produce Fe(III) minerals and therefore have the potential to affect arsenic mobility. In the present study, we demonstrate that the metabolism of anaerobic nitrate-reducing and phototrophic Fe(II)-oxidizing bacteria is not significantly affected by arsenate concentrations of up to 500 muM (37.5 mg/L). Even in the presence of the more toxic arsenic species, arsenite, cell metabolism was significantly impaired only at the highest arsenite concentration (500 muM) for one of the Fe(II)-oxidizers. All Fe(II)-oxidizing bacteria tested effectively immobilized arsenic during Fe(II) oxidation (>96%), lowering the remaining dissolved arsenic concentrations to values close to or even lower than the current drinking water limit of 10 microg/L. Since the minerals formed by these bacteria included highly crystalline Fe(III) minerals that are hardly reducible by Fe(III)-reducing bacteria, stimulation of arsenic immobilization by Fe(II)-oxidizing bacteria can potentially support water treatment systems or even be applied as an effective remediation strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.