Western diets are typically low in ω-3 fatty acids, and high in saturated and ω-6 fatty acids. There is a need to increase dietary ω-3 fatty acid content. Chia (Salvia hispanica L.) has the highest botanical source of alpha-linolenic acid (ALA) known, and recently has been receiving more attention because of this. Feeding ALA to animals has been shown to increase the ω-3 fatty acid content of the foods they produce, and hence offers consumers an easy way to increase their intake of ω3 fatty acids without altering their diet. Broilers were fed rapeseed, flaxseed, chia seed and chia meal to assess the ability of these feed ingredients to increase the ω-3 fatty acid content of the meat, and also to determine whether any negative effects on bird production would arise. Flaxseed produced significantly (P < 0.05) lower body weights, weight gains and poorer conversion ratios than did the other feeds. Except in the case of the chia meal with the dark meat, the chia seed significantly (P < 0.05) reduced the saturated fatty acid (SFA) content of the white and dark meats compared with the control diet. Adding ALA increased the ALA, LCω-3 fatty acid and total polyunsaturated fatty acid (PUFA) ω-3 fatty acid content of both meat types, except in the case of the white meat of the birds fed rapeseed. Chia seed gave the highest total PUFA ω-3 increase, yielding 157 and 200% increases for the dark and white meat, respectively, compared with the control. The ω-6:ω-3 and SFA:ω-3 ratios dramatically improved in both types of meat when chia seed, chia meal or flaxseed was added to the diet. The study also showed that not all ALA-rich seeds are biologically equivalent sources in terms of producing ω-3 enriched broiler meat. Chia proved to be superior to the other sources examined in this trial. Key words: Chia seed, flaxseed, rapeseed, omega-3, alpha-linolenic, broiler meat, fatty acid
1. Diets high in total lipids, saturated fatty acids, trans fatty acids, and having high ω-6:ω-3 fatty acid ratios, have been shown to be related to increased instances of coronary heart disease, while diets high in ω-3 fatty acids have been shown to decrease the risk. 2. Feeding ω-3 fatty acid diets to laying hens has been shown to improve the quality of eggs produced in terms of saturation and ω-3 content. 3. A study was undertaken to determine if the ω-3 fatty acid source, when fed to hens, influences the amount transferred to eggs. 4. Flaxseed and flaxseed oil, along with chia seed and chia seed oil, were the two main sources of ω-3 fatty acid examined during the 84 d trial. 5. All α-linolenic enriched treatments yielded significantly higher ω-3 fatty acid contents per g of yolk and per yolk, than the non-α-linolenic enriched diets. Chia oil and chia seed yielded 54·5 and 63·5% more mg of ω-3 fatty acid per g of yolk for the 56 d test period, and 13·4 and 66·2% more for the 84 d test period, than flaxseed oil and flaxseed, respectively. 6. The differences in omega-3 content were significant, except for the chia oil compared with the flax oil, at the end of the trial. 7. This trial has shown that differences in conversion exist among ω-3 fatty acid sources, at least when fed to hens, and indicates that chia may hold a significant potential as a source of ω-3 fatty acid for enriching foods, thereby making these foods a healthier choice for consumers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.