Zn-based biodegradable metallic materials have been regarded as new potential biomaterials for use as biodegradable implants, mainly because of the ideal degradation rate compared with those of Mg-based alloys and Fe-based alloys. In this study, we developed and investigated a novel Zn-4 wt % Ag alloy as a potential biodegradable metal. A thermomechanical treatment was applied to refine the microstructure and, consequently, to improve the mechanical properties, compared to pure Zn. The yield strength (YS), ultimate tensile strength (UTS) and elongation of the Zn-4Ag alloy are 157 MPa, 261 MPa, and 37%, respectively. The corrosion rate of Zn-4Ag calculated from released Zn ions in DMEM extracts is approximately 0.75 ± 0.16 μg cm–2 day–1, which is higher than that of pure Zn. In vitro cytotoxicity tests showed that the Zn-4Ag alloy exhibits acceptable toxicity to L929 and Saos-2 cells, and could effectively inhibit initial bacteria adhesion. This study shows that the Zn-4Ag exhibits excellent mechanical properties, predictable degradation behavior, acceptable biocompatibility, and effective antibacterial properties, which make it a candidate biodegradable material.
Zinc (Zn) and Zn-based alloys have been proposed as a new generation of absorbable metals mainly owing to the moderate degradation behavior of zinc between magnesium and iron. Nonetheless, mechanical strength of pure Zn is relatively poor, making it insufficient for the majority of clinical applications. In this study, a novel Zn–2Ag–1.8Au–0.2V (wt.%) alloy (Zn–Ag–Au–V) was fabricated and investigated for use as a potential absorbable biocompatible material. Microstructural characterization indicated an effective grain-refining effect on the Zn alloy after a thermomechanical treatment. Compared to pure Zn, the Zn–Ag–Au–V alloy showed significantly enhanced mechanical properties, with a yield strength of 168 MPa, an ultimate tensile strength of 233 MPa, and an elongation of 17%. Immersion test indicated that the degradation rate of the Zn–Ag–Au–V alloy in Dulbecco’s phosphate buffered saline was approximately 7.34 ± 0.64 μm/year, thus being slightly lower than that of pure Zn. Biocompatibility tests with L929 and Saos-2 cells showed a moderate cytotoxicity, alloy extracts at 16.7%, and 10% concentration did not affect metabolic activity and cell proliferation. Plaque formation in vitro was reduced, the Zn–Ag–Au–V surface inhibited adhesion and biofilm formation by the early oral colonizer Streptococcus gordonii, indicating antibacterial properties of the alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.