Nanocomposites based on polycaprolactone (PCL), containing concentrations of 1, 3 and 5 wt% of sodium montmorillonite (NT-25) and organo-modified montmorillonite clay, with three different salts (Viscogel B7, Viscogel S4 and Viscogel B8), were prepared employing the solution intercalation method using chloroform. The PCL nanocomposites were characterized by relaxometry, through determination of the hydrogen spin-lattice relaxation times using low-field nuclear magnetic resonance (NMR). Conventional X-ray diffraction (XDR) was also used to measure the basal space of the nanoclay. The proton spin-lattice relaxation parameters showed that hybrid nanocomposites were formed, containing different parts of intercalated and exfoliated organoclay. The proton T1rhoH also indicated changes in the microstructure, organization and the molecular mobility of the hybrid materials. NMR relaxometry is a good way to evaluate nanomaterials because it provides complementary information, since it is measured in a different time scale. Furthermore, differential scanning calorimetry and thermogravimetric analysis were also used to investigate the crystallization and thermal behavior of the nanocomposites, respectively. All materials had low crystallization temperature (Tc) and the melting temperature (Tm) were very close to that of the PCL matrix, but the degree of crystallinity of the nanocomposites decreased. TGA analysis demonstrated that montmorillonite accelerates PCL's decomposition while unmodified montmorillonite has the opposite effect.
In this study, nanostructured microparticles was developed with polycaprolactone (PCL), poly(vinyl alcohol) (PVAL) and nanoparticles of the commercial sodium clay NT-25® by using the spray drying technique. The systems obtained were characterized by Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Dynamic Laser Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). The NMR 13 C and FTIR techniques showed that both polymers were present in the microparticles and the DSC analysis revealed a small variation in the glass transition temperature of the PCL. The XRD and SEM analyses showed that the microparticles produced were amorphous and had a concave morphology. The NT-25 nanoload reduced the microparticles' size due to the multiple interactions formed in the hybrid nanocomposite material. Therefore, it was possible to develop microparticles by using biodegradable and biocompatible polymers, with different polarities, allowing the incorporation of hydrophilic and hydrophobic materials and enabling the inclusion of otherwise incompatible materials in the same system.
Glasses containing metallic nanoparticles are promising materials that should also possess the best spectroscopic, chemical, mechanical and thermal characteristics for technological applications in optics and photonics. For this reason it was chosen to synthesize and characterize the pure silver doped borosilicate glasses and silver nitrate. The present work investigates the generation of silver nanoparticles on the surface and the mass of a borosilicate glass in which it was directed to the synthesis process in which it was consisted: in the stoichiometric calculations, in the determination of the melting temperature, in the choice of reagents with high degree of purity, in the manufacture of the samples, in the appropriate polishes and in the determination of heat treatments close to Tg of the glass in question. From this phase, the research followed the application of techniques of differential thermal analysis (ATD) and transmission electron microscopy (MET). Thus, from the results and analyzes obtained, it was possible to observe that the borosilicate glass samples of this work will obtain satisfactory experimental results, in which it was possible to prove its optical and structural properties similar to those recognized in literature, thus making it a promising material in area of vitreous materials applied to nanotechnology borosilicate glasses are obtained from the combination of silicon dioxide (SiO2) with boron oxide (B2O3) and the resulting samples were annealed at various temperatures. Due to the structural shape, these glasses have a high resistance to thermal shock, good chemical durability and excellent electrical resistivity compared to other glasses on the market today. Therefore, based on these important structural, physical and chemical characteristics and also in the variety of applications, this study was chosen for the synthesis and characterization of pure borosilicate glass and doped with silver nitrate. We verified the formation of silver nanoparticles, after the heat treatment, by transmission electron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.