1. Clostridium difficile toxin B glucosylates the Ras-related low molecular mass GTPases of the Rho subfamily thereby inactivating them. In the present report, toxin B was applied as a tool to test whether Rho proteins participate in the carbachol-induced increase in the Ca¥ sensitivity of force and myosin light chain (MLC) phosphorylation in intact intestinal smooth muscle. 2. Small strips of the longitudinal muscle of guinea-pig small intestine were incubated in toxin B (40 ng ml¢) overnight. Carbachol-induced force and intracellular [Ca¥], and, in a separate series, force and MLC phosphorylation, were determined. 3. Carbachol induced a biphasic contraction: an initial rapid increase in force (peak 1) followed by a partial relaxation and a second delayed increase in force (peak 2). The peak of the Ca¥ signal measured with fura_2 preceded peak 1 of force and then declined to a lower suprabasal steady-state level. Peak 2 was not associated with a significant increase in [Ca¥]. Toxin B nearly completely inhibited peak 2 while peak 1 was not significantly inhibited. Toxin B had no effect on the Ca¥ transient. 4. In control strips, MLC phosphorylation at peak 2 was 27·7%, which was significantly higher than the resting value (18·6%). The inhibition of the second, delayed, rise in force induced by toxin B was associated with complete inhibition of the increase in MLC phosphorylation. The resting MLC phosphorylation was not significantly different from that of the control strips. 5. The initial increase in MLC phosphorylation determined 3 s after exposure to carbachol was 54% in the control strips. Toxin B also inhibited this initial phosphorylation peak despite the fact that the Ca¥ transient and the initial increase in force were not inhibited by toxin B. This suggests that Rho proteins play an important role in setting the balance between MLC phosphorylation and dephosphorylation reactions even at high levels of intracellular Ca¥. 6. These findings are consistent with the hypothesis that the delayed rise in force elicited by carbachol is due to an increase in the Ca¥ sensitivity of MLC phosphorylation mediated by Rho proteins.
Simulation has been shown to improve clinical learning outcomes, speed up the learning process and improve learner confidence, whilst initially taking pressure off busy clinical lists. The World Federation for Ultrasound in Medicine and Biology (WFUMB) state of the art paper on the use of simulators in ultrasound education introduces ultrasound simulation, its advantages and challenges. It describes different simulator types, including low and high-fidelity simulators, the requirements and technical aspects of simulators, followed by the clinical applications of ultrasound simulation. The paper discusses the role of ultrasound simulation in ultrasound clinical training, referencing established literature. Requirements for successful ultrasound simulation acceptance into educational structures are explored. Despite being in its infancy, ultrasound simulation already offers a wide range of training opportunities and likely holds the key to a broader point of care ultrasound education for medical students, practicing doctors, and other health care professionals. Despite the drawbacks of simulation, there are also many advantages, which are expanding rapidly as the technology evolves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.