Over the past 2 decades there has been increasing evidence supporting an important contribution from food-derived advanced glycation end products (AGEs) to the body pool of AGEs and therefore increased oxidative stress and inflammation, processes that play a major role in the causation of chronic diseases. A 3-d symposium (1st Latin American Symposium of AGEs) to discuss this subject took place in Guanajuato, Mexico, on 1-3 October 2014 with the participation of researchers from several countries. This review is a summary of the different presentations and subjects discussed, and it is divided into 4 sections. The first section deals with current general knowledge about AGEs. The second section dwells on mechanisms of action of AGEs, with special emphasis on the receptor for advanced glycation end products and the potential role of AGEs in neurodegenerative diseases. The third section discusses different approaches to decrease the AGE burden. The last section discusses current methodologic problems with measurement of AGEs in different samples. The subject under discussion is complex and extensive and cannot be completely covered in a short review. Therefore, some areas of interest have been left out because of space. However, we hope this review illustrates currently known facts about dietary AGEs as well as pointing out areas that require further research.
Advanced glycation end products (AGEs) are a heterogeneous, complex group of compounds that are formed when reducing sugar reacts in a non-enzymatic way with amino acids in proteins and other macromolecules. This occurs both exogenously (in food) and endogenously (in humans) with greater concentrations found in older adults. While higher AGEs occur in both healthy older adults and those with chronic diseases, research is progressing to both quantify AGEs in food and in people, and to identify mechanisms that would explain why some human tissues are damaged, and others are not. In the last twenty years, there has been increased evidence that AGEs could be implicated in the development of chronic degenerative diseases of aging, such as cardiovascular disease, Alzheimer’s disease and with complications of diabetes mellitus. Results of several studies in animal models and humans show that the restriction of dietary AGEs has positive effects on wound healing, insulin resistance and cardiovascular diseases. Recently, the effect of restriction in AGEs intake has been reported to increase the lifespan in animal models. This paper will summarize the work that has been published for both food AGEs and in vivo AGEs and their relation with aging, as well as provide suggestions for future research.
The augmented consumption of dietary advanced glycation end products (dAGEs) has been associated with increased oxidative stress and inflammation, however, there is insufficient information over the effect on insulin resistance. The objective of the present study is to investigate the effect of dAGEs restriction on tumor necrosis factor-α (TNF-α), malondialdehyde, C-reactive protein (CRP), and insulin resistance in DM2 patients. We carried out a randomized 6 weeks prospective study in two groups of patients: subjects with a standard diet (n = 13), vs low dAGEs (n = 13). At the beginning and the end of study, we collected anthropometric measurements, and values of circulating glucose, HbA1c, lipids, insulin, serum AGEs, CRP, TNF-α and malondialdehyde. Anthropometric measurements, glucose, and lipids were similar in both groups at base line and at the end of the study. Estimation of basal dAGEs was similar in both groups; after 6 weeks it was unchanged in the standard group but in the low dAGEs group decreased by 44% (p<0.0002). Changes in TNF-α levels were different under standard diet (12.5 ± 14.7) as compared with low dAGEs (−18.36 ± 17.1, p<0.00001); changes in malondialdehyde were different in the respective groups (2.0 ± 2.61 and −0.83 ± 2.0, p<0.005) no changes were found for insulin levels or HOMA-IR. In conclusion, The dAGEs restriction decreased significantly TNF-α and malondialdehyde levels.
Type 2 diabetes mellitus (DM2) is one of the most widely prevalent diseases worldwide and is currently screened by invasive techniques based on enzymatic assays that measure plasma glucose concentration in a laboratory setting. A promising plan of action for screening DM2 is to identify molecular signatures in a non-invasive fashion. This work describes the application of portable Raman spectroscopy coupled with several supervised machine-learning techniques, to discern between diabetic patients and healthy controls (Ctrl), with a high degree of accuracy. Using artificial neural networks (ANN), we accurately discriminated between DM2 and Ctrl groups with 88.9-90.9% accuracy, depending on the sampling site. In order to compare the ANN performance to more traditional methods used in spectroscopy, principal component analysis (PCA) was carried out. A subset of features from PCA was used to generate a support vector machine (SVM) model, albeit with decreased accuracy (76.0-82.5%). The 10-fold cross-validation model was performed to validate both classifiers. This technique is relatively low-cost, harmless, simple and comfortable for the patient, yielding rapid diagnosis. Furthermore, the performance of the ANN-based method was better than the typical performance of the invasive measurement of capillary blood glucose. These characteristics make our method a promising screening tool for identifying DM2 in a non-invasive and automated fashion.
Clinical studies in subjects with diabetes mellitus have shown that high intake of dietary AGEs increases inflammation markers, oxidative stress, and could impair endothelial function. In subjects at risk for cardiometabolic diseases (with overweight, obesity, or prediabetes), dietary AGE restriction decreases some inflammatory molecules and improves insulin sensitivity. However, studies in healthy subjects are limited, and not all of the studies have shown a decrease in circulating AGEs. Therefore, it is still unclear if dietary AGEs represent a health concern for people potentially at risk for cardiometabolic diseases. The evidence shows that dietary AGEs are bioavailable and absorbed, and the rate of excretion depends on dietary intake. The metabolic fate of most dietary AGEs remains unknown. Regardless, most studies have shown that by diminishing AGE intake, circulating levels will also decrease. Thus, dietary AGEs can modulate the AGE load at least in patients with DM, overweight, or obesity. Studies with specific clinical outcomes and large-scale observational studies are needed for a better risk assessment of dietary AGEs and to establish dietary recommendations accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.