Raspberry-like (RB) polymer particles were prepared, fluorinated, and cast onto glass plates to yield highly water- and oil-repellant superamphiphobic particulate coatings. To procure the RB particles, glycidyl-bearing 212 and 332 nm particles (abbreviated as s-GMA and l-GMA, respectively) were first prepared via surfactant-free free radical emulsion polymerization. Reacting the glycidyl groups of the l-GMA particles with 2,2'-(ethylenedioxy)bis(ethylamine) (EDEA) produced large amine-functionalized particles (l-NH2). The l-NH2 particles were then reacted with an excess of the s-GMA particles to create RB particles. For surface fluorination, the residual glycidyl groups of the smaller s-GMA particles surrounding the central l-NH2 core of the RB particles were first converted to amino groups by reaction with EDEA. The purified amino-bearing particles were subsequently reacted with an excess of a statistical copolymer poly(2-(perfluorooctyl)ethyl methacrylate-co-glycidyl methacrylate), P(FOEMA-co-GMA). Casting these particles onto glass plates yielded particulate films that exhibited static contact angles of 165 ± 2°, 155 ± 3°, 152 ± 4°, and 143 ± 1° and droplet rolling angles of <1 °, <1 °, 7 ± 2°, and 13 ± 2° for water, diiodomethane, corn-based cooking oil, and hexadecane droplets, respectively. These results demonstrated that this practical bottom-up approach could be used to produce superamphiphobic coatings.
We present herein an example of nanocrystalline antimony-doped tin oxide (nc-ATO) disordered macroporous "inverse opal" 3D electrodes as efficient charge-collecting support structures for the electrolysis of water using a hematite surface catalyst. The 3D macroporous structures were created via templating of polystyrene spheres, followed by infiltration of the desired precursor solution and annealing at high temperature. Using cyclic voltammetry and electrochemical impedance spectroscopy, it was determined that the use of this 3D transparent conducting oxide with a hematite surface catalyst allowed for a 7-fold increase in active surface area for water splitting with respect to its 2D planar counterpart. This ratio of surface areas was evaluated based on the presence of oxidized trap states on the hematite surface, as determined from the equivalent circuit analysis of the Nyquist plots. Furthermore, the presence of nc-ATO 2D and 3D "underlayer" structures with hematite deposited on top resulted in decreased charge transfer resistances and an increase in the number of available active surface sites at the semiconductor-liquid junction when compared to hematite films lacking any nc-ATO substructures. Finally, absorption, transmission, and reflectance spectra of all of the tested films were measured, suggesting the feasibility of using 3D disordered structures in photoelectrochemical reactions, due to the high absorption of photons by the surface catalyst material and trapping of light within the structure.
Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.