In this paper we report the cloning and sequence analysis of four genes, located on plasmid pb, which are involved in the synthesis of thiamin in Rhizobium etli (thiC, thiO, thiG, and thiE). Two precursors, 4-methyl-5-(-hydroxyethyl)thiazole monophosphate and 4-amino-5-hydroxymethylpyrimidine pyrophosphate, are coupled to form thiamin monophosphate, which is then phosphorylated to make thiamin pyrophosphate. The first open reading frame (ORF) product, of 610 residues, has significant homology (69% identity) with the product of thiC from Escherichia coli, which is involved in the synthesis of hydroxymethylpyrimidine. The second ORF product, of 327 residues, is the product of a novel gene denoted thiO. A protein motif involved in flavin adenine dinucleotide binding was found in the amino-terminal part of ThiO; also, residues involved in the catalytic site of D-amino acid oxidases are conserved in ThiO, suggesting that it catalyzes the oxidative deamination of some intermediate of thiamin biosynthesis. The third ORF product, of 323 residues, has significant homology (38% identity) with ThiG from E. coli, which is involved in the synthesis of the thiazole. The fourth ORF product, of 204 residues, has significant homology (47% identity) with the product of thiE from E. coli, which is involved in the condensation of hydroxymethylpyrimidine and thiazole. Strain CFN037 is an R. etli mutant induced by a single Tn5mob insertion in the promoter region of the thiCOGE gene cluster. The Tn5mob insertion in CFN037 occurred within a 39-bp region which is highly conserved in all of the thiC promoters analyzed and promotes constitutive expression of thiC. Primer extension analysis showed that thiC transcription in strain CFN037 originates within the Tn5 element. Analysis of c-type protein content and expression of the fixNOQP operon, which codes for the symbiotic terminal oxidase cbb 3 , revealed that CFN037 produces the cbb 3 terminal oxidase. These data show a direct relationship between expression of thiC and production of the cbb 3 terminal oxidase. This is consistent with the proposition that a purine-related metabolite, 5-aminoimidazole-4-carboxamide ribonucleotide, is a negative effector of the production of the symbiotic terminal oxidase cbb 3 in R. etli.
The insecticidal crystal (Cry) proteins produced by Bacillus thuringiensis undergo several conformational changes from crystal inclusion protoxins to membraneinserted channels in the midgut epithelial cells of the target insect. Here we analyzed the stability of the different forms of Cry1Ab toxin, monomeric toxin, pre-pore complex, and membrane-inserted channel, after urea and thermal denaturation by monitoring intrinsic tryptophan fluorescence of the protein and 1-anilinonaphthalene-8-sulfonic acid binding to partially unfolded proteins. Our results showed that flexibility of the monomeric toxin was dramatically enhanced upon oligomerization and was even further increased by insertion of the pre-pore into the membrane as shown by the lower concentration of chaotropic agents needed to achieve unfolding of the oligomeric species. The flexibility of the toxin structures is further increased by alkaline pH. We found that the monomer-monomer interaction in the pre-pore is highly stable because urea promotes oligomer denaturation without disassembly. Partial unfolding and limited proteolysis studies demonstrated that domains II and III were less stable and unfold first, followed by unfolding of the most stable domain I, and also that domain I is involved in monomer-monomer interaction. The thermal-induced unfolding and analysis of energy transfer from Trp residues to bound 1-anilinonaphthalene-8-sulfonic acid dye showed that in the membrane-inserted pore domains II and III are particularly sensitive to heat denaturation, in contrast to domain I, suggesting that only domain I may be inserted into the membrane. Finally, the insertion into the membrane of the oligomeric pre-pore structure was not affected by pH. However, a looser conformation of the membrane-inserted domain I induced by neutral or alkaline pH correlates with active channel formation. Our studies suggest for the first time that a more flexible conformation of Cry toxin could be necessary for membrane insertion, and this flexible structure is induced by toxin oligomerization. Finally the alkaline pH found in the midgut lumen of lepidopteran insects could increase the flexibility of membrane-inserted domain I necessary for pore formation.
Previously, we reported finding duplicated fixNOQP operons in Rhizobium etli CFN42. One of these duplicated operons is located in the symbiotic plasmid (fixNOQPd), while the other is located in a cryptic plasmid (fixNOQPf). Although a novel FixL-FixKf regulatory cascade participates in microaerobic expression of both fixNOQP duplicated operons, we found that a mutation in fixL eliminates fixNOQPf expression but has only a moderate effect on expression of fixNOQPd. This suggests that there are differential regulatory controls. One of these genes (fnrNd) is located on the symbiotic plasmid, while the other (fnrNchr) is located on the chromosome. Analysis of the expression of the fnrN genes using transcriptional fusions with lacZ showed that the two fnrN genes are differentially regulated, since only fnrNd is expressed in microaerobic cultures of the wild-type strain while fnrNchr is negatively controlled by FixL. Mutagenesis of the two fnrN genes showed that both genes participate, in conjunction with FixL-FixKf, in the microaerobic induction of the fixNOQPd operon. Participation of these genes is also seen during the symbiotic process, in which mutations in fnrNd and fnrNchr, either singly or in combination, lead to reductions in nitrogen fixation. Therefore, R. etli employs a regulatory circuit for induction of the fixNOQPd operon that involves at least three transcriptional regulators of the CRP-Fnr family. This regulatory circuit may be important for ensuring optimal production of the cbb 3 , terminal oxidase during symbiosis.
A Rhizobium etli Tn5mob-induced mutant (CFN035) exhibits an enhanced capacity to oxidize N,N,N',N', tetramethyl-p -phenylenediamine (TMPD), a presumptive indicator of elevated cytochrome c terminal oxidase activity. Sequencing of the mutated gene in CFN035 revealed that it codes for the amidophosphoribosyl transferase enzyme (PurF) that catalyzes the first step in the purine biosynthetic pathway. Two c-type cytochromes with molecular weights of 32 and 27 kDa were produced in strain CFN035, which also produced a novel CO-reactive cytochrome (absorbance trough at 553 nm), in contrast to strain CE3 which produced a single 32 kDa c-type protein and did not produce the 553 nm CO-reactive cytochrome. A wild-type R. etli strain that expresses the Bradyrhizobium japonicum fixNOQP genes, which code for the symbiotic cytochrome terminal oxidase cbb3, produced similar absorbance spectra (a trough at 553 nm in CO-difference spectra) and two c-type proteins similar in size to those of strain CFN035, suggesting that CFN035 also produces the cbb3 terminal oxidase. The expression of a R. etli fixN-lacZ gene fusion was measured in several R. etli mutants affected in different steps of the purine biosynthetic pathway. Our analysis showed that purF, purD, purQ, purL, purY, purK and purE mutants expressed three-fold higher levels of the fixNOQP operon than the wild-type strain. The derepressed expression of fixN was not observed in a purH mutant. The purH gene product catalyzes the conversion of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to 5-form-aminoimidazole-4-carboxamide ribonucleotide (FAICAR) and inosine. Supplementation with AICA riboside lowered the levels of fixN expression in the purF mutants. These data are consistent with the possibility that AICAR, or a closely related metabolite, is a negative effector of the production of the symbiotic terminal oxidase cbb3 in R. etli.
Evans blue was used to determine viability in Symbiodinium kawagutii cultures but heat treatments at up to 80°C for 1 h were required for detecting blue-stained dead cells. About 3 h at this temperature was necessary to obtain *50% blue-stained dead cells, and more than 6 h for 100%. In comparison, Trypan blue showed unusual elevated numbers of viable cells at times when more than 50% cells were dead by Evans blue parameters. Respiration decreased to 17 and 13.2% after 1 and 2 h at 80°C, respectively, and a marginal but still statistically significant 7.5% was scored after 3 h. Thus, cultured S. kawagutii cells were more resistant to heat-induced death than expected, and Evans blue was reliable for assessment of their viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.