Motivated by the need to predict vortex cavitation inception, a study has been conducted to investigate bubble capture by a concentrated line vortex of core size r c and circulation ⌫ 0 under noncavitating and cavitating conditions. Direct numerical simulations that solve simultaneously for the two phase flow field, as well as a simpler one-way coupled point-particle-tracking model ͑PTM͒ were used to investigate the capture process. The capture times were compared to experimental observations. It was found that the point-particle-tracking model can successfully predict the capture of noncavitating small nuclei by a line vortex released far from the vortex axis. The nucleus grows very slowly during capture until the late stages of the process, where bubble/vortex interaction and bubble deformation become important. Consequently, PTM can be used to study the capture of cavitating nuclei by dividing the process into the noncavitating capture of the nucleus, and then the growth of the nucleus in the low-pressure core region. Bubble growth and deformation act to speed up the capture process.
Developed cavitation in a shear layer was studied experimentally in order to determine the effect that the growth and collapse of cavitation have on the dynamics of shear flows. Planar particle imaging velocimetry (PIV) was used to measure the velocity field, the vorticity, strain rates, and Reynolds stresses of the flow downstream of the cavitating and noncavitating shear layer; the flow pressures and void fraction were also measured. The flow downstream of a cavitating shear flow was compared to the noncavitating shear flow. For cavitating shear layers with void fractions of up to 1.5%, the growth rate of the shear layer and the mean flow downstream of the shear layer were modified by the growth and collapse of cavitation bubbles. The cross-stream velocity fluctuations and the Reynolds stresses measured downstream of the cavitating shear layer were reduced compared to the entirely noncavitating flow. This result is inconsistent with a scaling of the shear stress within the shear flow based on the mean flow. The decrease in the cross-stream fluctuations and Reynolds stresses suggests that the cavitation within the cores of strong streamwise vortices has decreased the coupling between the streamwise and cross-stream velocity fluctuations.
Surface electrical impedance probes are used to examine the bubbly flow beneath and in the closure region of partial attached cavities. A series of electrodes were mounted flush to the surface of a cavitating hydrofoil to detect the presence of liquid or vapor through changes in the impedance of the local fluid medium. Signals from the electrical probes were used to determine the near-surface gas-phase velocity and the shedding frequency of the gas phase. The impedance technique is shown to have the potential to measure advection velocities within a partial cavity, and the frequency content of the signal is used to determine the dynamics of the vapor shedding process. [S0098-2202(00)00501-0]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.