Owing to their ubiquitous presence and ability to act as primary or opportunistic pathogens, Vibrio species greatly contribute to the diversity and evolution of marine ecosystems. This study was aimed at unveiling the cellular strategies enabling the marine gammaproteobacterium Vibrio harveyi to adapt and persist in natural aquatic systems. We found that, although V. harveyi incubation in seawater microcosm at 20 °C for 2 weeks did not change cell viability and culturability, it led to a progressive reduction in the average cell size. Microarray analysis revealed that this morphological change was accompanied by a profound decrease in gene expression affecting the central carbon metabolism, major biosynthetic pathways, and energy production. In contrast, V. harveyi elevated expression of genes closely linked to the composition and function of cell envelope. In addition to triggering lipid degradation via the β-oxidation pathway and apparently promoting the use of endogenous fatty acids as a major energy and carbon source, V. harveyi upregulated genes involved in ancillary mechanisms important for sustaining iron homeostasis, cell resistance to the toxic effect of reactive oxygen species, and recycling of amino acids. The above adaptation mechanisms and morphological changes appear to represent the major hallmarks of the initial V. harveyi response to starvation.
Previous work demonstrated that physiological, morphological, and gene expression changes as well as the time-dependent entry into the viable but not culturable (VBNC) state are used by Vibrio species to survive and cope with diverse stress conditions including seasonal temperature downshifts and starvation. To learn more about the nature and specific contribution of membrane proteins to cell adaptation and survival, we analyzed variations in the protein composition of cell envelope and related them to morphological and physiological changes that were taking place during the long-term permanence of Vibrio harveyi in seawater microcosm at 4 °C. We found that after 21 days of permanence, nearly all population (ca. 99 %) of V. harveyi acquired the VBNC phenotype. Although the size of V. harveyi cells gradually decreased during the incubation time, we found that this morphological change was not directly related to their entry into the VBNC state. Our proteomic study revealed that the level of membrane proteins playing key roles in cellular transport, maintenance of cell structure, and in bioenergetics processes remained unchanged along starvation at low temperature, thus suggesting that V. harveyi might need these proteins for the long-term survival and/or for the resuscitation process. On a contrary, the level of two proteins, elongation factor Tu (EF-TU) and bacterioferritin, greatly increased reaching the maximal values by the end of the incubation period. We further discuss the above data with respect to the putative roles likely exerted by membrane proteins during transition to and maintaining of the VBNC state.
Acinetobacter baumannii possesses a tremendous potential to thrive under hostile conditions. To learn more about its survival strategy and capacity to persist in the environment, we studied the effect of temperature, nutrient deprivation and dryness on the long-term survival of two A. baumannii strains (ATCC 19606(T) and a clinical isolate). Our results revealed that both strains show a great persistence under stress that appears to involve a bust-and-boom strategy. Bacterial survival was differentially affected by temperature and physical environment: Desiccation favored cell resistance to stress at 20 and 37 °C, while survival in aqueous environments was temperature dependent and led to changes in several cellular characteristics. In addition, we tested the ability of the A. baumannii ATCC 19606(T) strain to form biofilms by monitoring the expression of adhesion-/biofilm-related genes (ompA, bfmR and csuAB). The observed downregulation of these genes suggests that the potential difficulties to adhere to solid surfaces and form biofilms likely limit the capacity of starved cells to spread and colonize abiotic surfaces.
The life and survival of the marine bacterium Vibrio harveyi during its adaptation in natural aquatic systems is highly influenced by the availability of nutrients and temperature. To learn about adaptation strategies evolved by this bacterium to cope with drastic temperature downshifts and nutrients depletion, we have studied the phenotypical and gene expression changes occurring in V. harveyi during its adaptation to cold seawater. We found that incubation in cold seawater up to 12 h did not cause any significant morphological changes in V. harveyi and had no effect on the number of viable and culturable cells. Microarray analysis revealed that the V. harveyi response to cold seawater leads to up- and downregulation of numerous genes controlling the central carbon metabolism, nucleotide and amino acid biosynthesis as well as DNA repair. In addition, expression of some genes controlling biosynthesis of lipids, molecular transport, and energy production was altered to likely affect the composition and properties of the V. harveyi cell envelope, thus implying the putative role of this compartment in adaptation to stress. Here, we discuss these results with regard to the putative adaptive responses likely triggered by V. harveyi to cope with environmental challenges in natural aquatic systems.
In the aquatic ecosystems, microorganisms are exposed to seasonal and circadian cycles. Abiotic factors (e.g. low temperature, nutrient deprivation) can cause morphological and physiological changes in bacteria, thereby facilitating cell survival. While representing the interface between the cells and external environment, the cell envelope plays a major role in bacterial response to stress and characterization of the changes it undergoes can help to understand the adaptation process. In this study, analysis of the morphological and physiological changes as well as variations in protein composition of the Escherichia coli cell envelope was carried out for populations maintained for 21 days under nutrient deprivation and suboptimal temperatures (4°C and 20°C). It was found that the absence of nutrients led to a temperature-dependent reduction of cell culturability but had no effect on cell viability and integrity. The concentration of membrane proteins playing the key roles in cellular transport, maintenance of cell structure or bioenergetics processes remained mainly unchanged. In contrast, the level of several proteins such as the elongation factor EFTu 1, components of Bam complex or proteins implicated in chemotaxis was altered, thus indicating that cells were readily responding and adapting to stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.