Changes in the outer membrane subproteome of Escherichia coli along the transition to the viable but nonculturable state (VBNC) were studied. The VBNC state was triggered by exposure of E. coli cells to adverse conditions such as aquatic systems, starvation, suboptimal temperature, visible light irradiation and seawater. The subproteome, obtained according to Molloy et al., was analysed at the beginning of exposure (inoculum, phase 1), after a variable exposure time (95% of population culturable, phase 2) and when populations were mainly in the VBNC state (95% of cells VBNC, phase 3). Proteome changes were dependent on adverse conditions inducing the transition and were detected mainly in phase 2. The permanence of E. coli cells in seawater under illumination conditions entailed a dramatic rearrangement of the outer membrane subproteome involving 106 new spots, some of which could be identified by peptide fingerprinting. However, proteins exclusive to the VBNC state were not detected.
Discovering the means to control the increasing dissemination of pathogenic vibrios driven by recent climate change is challenged by the limited knowledge of the mechanisms in charge of Vibrio spp. persistence and spread in the time of global warming. To learn about physiological and gene expression patterns associated with the long-term persistence of V. harveyi at elevated temperatures, we studied adaptation of this marine bacterium in seawater microcosms at 30 °C which closely mimicked the upper limit of sea surface temperatures around the globe. We found that nearly 90% of cells lost their culturability and became partly damaged after two weeks, thus suggesting a negative impact of the combined action of elevated temperature and shortage of carbon on V. harveyi survival. Moreover, further gene expression analysis revealed that major adaptive mechanisms were poorly coordinated and apparently could not sustain cell fitness. On the other hand, elevated temperature and starvation promoted expression of many virulence genes, thus potentially reinforcing the pathogenicity of this organism. These findings suggest that the increase in disease outbreaks caused by V. harveyi under rising sea surface temperatures may not reflect higher cell fitness, but rather an increase in virulence enabling V. harveyi to escape from adverse environments to nutrient rich, host-pathogen associations.
After induction of the viable but nonculturable (VBNC) state in Escherichia coli populations, we analysed abiotic and biotic factors suggested to promote the resuscitation process. The response to the stressing conditions implied the formation of three subpopulations, culturable, VBNC and nonviable. In most adverse situations studied, the VBNC subpopulation did not represent the dominant fraction, decreasing with time. This suggests that, in most cases, the VBNC is not a successful phenotype. Combining methods of dilution and inhibition of remaining culturable cells, we designed a working protocol in order to distinguish unequivocally between regrowth and resuscitation. Reversion of abiotic factors inducing nonculturability as well as prevention of additional oxidative stress did not provoke resuscitation. Participation of biotic factors was studied by addition of supernatants from different origin without positive results. These results indicate that the E. coli strain used is not able to resuscitate from the VBNC state. VBNC cells release into the surrounding medium, and could thus aid in the survival of persisting culturable cells. The formation of a VBNC subpopulation could thus be considered as an adaptive process, designed for the benefit of the population as a whole.
Owing to their ubiquitous presence and ability to act as primary or opportunistic pathogens, Vibrio species greatly contribute to the diversity and evolution of marine ecosystems. This study was aimed at unveiling the cellular strategies enabling the marine gammaproteobacterium Vibrio harveyi to adapt and persist in natural aquatic systems. We found that, although V. harveyi incubation in seawater microcosm at 20 °C for 2 weeks did not change cell viability and culturability, it led to a progressive reduction in the average cell size. Microarray analysis revealed that this morphological change was accompanied by a profound decrease in gene expression affecting the central carbon metabolism, major biosynthetic pathways, and energy production. In contrast, V. harveyi elevated expression of genes closely linked to the composition and function of cell envelope. In addition to triggering lipid degradation via the β-oxidation pathway and apparently promoting the use of endogenous fatty acids as a major energy and carbon source, V. harveyi upregulated genes involved in ancillary mechanisms important for sustaining iron homeostasis, cell resistance to the toxic effect of reactive oxygen species, and recycling of amino acids. The above adaptation mechanisms and morphological changes appear to represent the major hallmarks of the initial V. harveyi response to starvation.
Previous work demonstrated that physiological, morphological, and gene expression changes as well as the time-dependent entry into the viable but not culturable (VBNC) state are used by Vibrio species to survive and cope with diverse stress conditions including seasonal temperature downshifts and starvation. To learn more about the nature and specific contribution of membrane proteins to cell adaptation and survival, we analyzed variations in the protein composition of cell envelope and related them to morphological and physiological changes that were taking place during the long-term permanence of Vibrio harveyi in seawater microcosm at 4 °C. We found that after 21 days of permanence, nearly all population (ca. 99 %) of V. harveyi acquired the VBNC phenotype. Although the size of V. harveyi cells gradually decreased during the incubation time, we found that this morphological change was not directly related to their entry into the VBNC state. Our proteomic study revealed that the level of membrane proteins playing key roles in cellular transport, maintenance of cell structure, and in bioenergetics processes remained unchanged along starvation at low temperature, thus suggesting that V. harveyi might need these proteins for the long-term survival and/or for the resuscitation process. On a contrary, the level of two proteins, elongation factor Tu (EF-TU) and bacterioferritin, greatly increased reaching the maximal values by the end of the incubation period. We further discuss the above data with respect to the putative roles likely exerted by membrane proteins during transition to and maintaining of the VBNC state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.