In an animal model of AMI relevant to the human disease, intracoronary administration of IGF-1/HGF is a practical and effective strategy to reduce pathological cardiac remodeling, induce myocardial regeneration, and improve ventricular function.
Aims Anthracycline-induced cardiotoxicity (AIC) is a serious adverse effect among cancer patients. A central mechanism of AIC is irreversible mitochondrial damage. Despite major efforts, there are currently no effective therapies able to prevent AIC. Methods and Results Forty Large-White pigs were included. In Study 1, 20 pigs were randomized 1:1 to remote ischemic pre-conditioning (RIPC, 3 cycles of 5 min leg ischemia followed by 5 min reperfusion) or no pretreatment. RIPC was performed immediately before each intracoronary doxorubicin injections (0.45 mg/kg) given at weeks 0, 2, 4, 6, and 8. A group of 10 pigs with no exposure to doxorubicin served as healthy controls. Pigs underwent serial cardiac magnetic resonance (CMR) exams at baseline and at weeks 6, 8, 12, and 16, being sacrifice after that. In study 2, 10 new pigs received 3 doxorubicin injections (with/out preceding RIPC) and were sacrificed at week 6. In Study 1, LVEF depression was blunted animals receiving RIPC before doxorubicin (RIPC-Doxo), which had a significantly higher LVEF at week 16 than doxorubicin treated pigs that received no pretreatment (Untreated-Doxo) (41.5±9.1% vs 32.5±8.7%, p = 0.04). It was mainly due to conserved regional contractile function. In Study 2, transmission electron microscopy (TEM) at week 6 showed fragmented mitochondria with severe morphological abnormalities in Untreated-Doxo pigs, together with upregulation of fission and autophagy proteins. At the end of the 16-week Study 1 protocol, TEM revealed overt mitochondrial fragmentation with structural fragmentation in Untreated-Doxo pigs, whereas interstitial fibrosis was less severe in RIPC+Doxo pigs. Conclusion In a translatable large animal model of AIC, RIPC applied immediately before each doxorubicin injection resulted in preserved cardiac contractility with significantly higher long-term LVEF and less cardiac fibrosis. RIPC prevented mitochondrial fragmentation and dysregulated autophagy from AIC early stages. RIPC is a promising intervention for testing in clinical trials in AIC. Translational perspective Serial cardiac magnetic resonance (CMR) evaluation of a highly translatable large animal model of anthracycline-induced cardiotoxicity (AIC) shows that cumulative exposure to doxorubicin results in significantly reduced LVEF and extensive mitochondrial fragmentation. Remote ischemic preconditioning (RIPC) applied before each doxorubicin cycle preserved cardiac contractility and LVEF in long-term CMR exams. RIPC prevented doxorubicin-induced irreversible mitochondrial fragmentation and dysregulated autophagy. RIPC is as an attractive strategy for testing in clinical trials in AIC.
Aims The aim of this study was to study changes in coronary microcirculation status during and after several cycles of anthracycline treatment. Methods and Results Large-White male pigs (n = 40) were included in different experimental protocols (ExPr.) according to anthracycline cumulative exposure (0.45 mg/kg intracoronary (IC) doxorubicin per injection) and follow-up: Control (no doxorubicin); Single injection and sacrifice either at 48 hours (ExPr. 1) or 2 weeks (ExPr. 2); Three injections two weeks apart (low cumulative dose) and sacrifice either 2 weeks (ExPr. 3) or 12 weeks (ExPr. 4) after third injection; Five injections two weeks apart (high cumulative dose) and sacrifice 8 weeks after fifth injection (ExPr. 5). All groups were assessed by serial cardiac magnetic resonance (CMR) to quantify perfusion and invasive measurement of coronary flow reserve (CFR). At the end of each protocol, animals were sacrificed for ex vivo analyses. Vascular function was further evaluated by myography in explanted coronary arteries of pigs undergoing ExPr. 3 and controls. A single doxorubicin injection had no impact on microcirculation status, excluding a direct chemical toxicity. A series of five fortnightly doxorubicin injections (high cumulative dose) triggered a progressive decline in microcirculation status, evidenced by reduced CMR-based myocardial perfusion and CFR-measured impaired functional microcirculation. In the high cumulative dose regime (ExPr. 5), microcirculation changes appeared long before any contractile defect became apparent. Low cumulative doxorubicin dose (3 biweekly injections) was not associated with any contractile defect across long-term follow-up, but provoked persistent microcirculation damage, evident soon after third dose injection. Histological and myograph evaluations confirmed structural damage to arteries of all calibers even in animals undergoing low cumulative dose regimes. Conversely, arteriole damage and capillary bed alteration occurred only after high cumulative dose regime. Conclusion Serial in vivo evaluations of microcirculation status using state-of-the-art CMR and invasive CFR show that anthracyclines treatment is associated with progressive and irreversible damage to the microcirculation. This long-persisting damage is present even in low cumulative dose regimes, which are not associated with cardiac contractile deficits. Microcirculation damage might explain some of the increased incidence of cardiovascular events in cancer survivors who received anthracyclines without showing cardiac contractile defects.
Summary A statistical and pathological study on uterine tumours during the examination of 1489 female bovines at slaughter was carried out. A 0.4% (n = 6) incidence of uterine neoplasms, being 50% adenocarcinomas and the other 50% leiomyomas, was diagnosed. With regard to age groups, tumours were more frequent in the 11–15‐year‐old group. Two animals affected by adenocarcinoma were not fertile and they had ovarian metastasis that, to the authors' knowledge, has been cited as extremely rare in cows. An ultrastructural study of these carcinomas and their metastasis was also made. Two leiomyomas were intramural and another one was pedunculated and subserous located. All leiomyomas showed the features of old tumours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.