BackgroundMobile technology gives researchers unimagined opportunities to design new interventions to increase physical activity. Unfortunately, it is still unclear which elements are useful to initiate and maintain behavior change.ObjectiveIn this meta-analysis, we investigated randomized controlled trials of physical activity interventions that were delivered via mobile phone. We analyzed which elements contributed to intervention success.MethodsAfter searching four databases and science networks for eligible studies, we entered 50 studies with N=5997 participants into a random-effects meta-analysis, controlling for baseline group differences. We also calculated meta-regressions with the most frequently used behavior change techniques (behavioral goals, general information, self-monitoring, information on where and when, and instructions on how to) as moderators.ResultsWe found a small overall effect of the Hedges g=0.29, (95% CI 0.20 to 0.37) which reduced to g=0.22 after correcting for publication bias. In the moderator analyses, behavioral goals and self-monitoring each led to more intervention success. Interventions that used neither behavioral goals nor self-monitoring had a negligible effect of g=0.01, whereas utilizing either technique increased effectiveness by Δg=0.31, but combining them did not provide additional benefits (Δg=0.36).ConclusionsOverall, mHealth interventions to increase physical activity have a small to moderate effect. However, including behavioral goals or self-monitoring can lead to greater intervention success. More research is needed to look at more behavior change techniques and their interactions. Reporting interventions in trial registrations and articles need to be structured and thorough to gain accurate insights. This can be achieved by basing the design or reporting of interventions on taxonomies of behavior change.
When deciding on an online purchase, consumers often face a plethora of information. Yet, individuals consumers differ greatly in the amount of information they are willing and able to acquire and process before making purchasing decisions. Extensively processing all available information does not necessarily promote good decisions. Instead, the empirical evidence suggests that reviewing too much information or too many choice alternatives can impair decision quality. Using simulated contract conclusion scenarios, we identify distinctive types of information processing styles and find that certain search and selection strategies predict the quality of the final choice. Participants (N = 363) chose a cellular service contract in a web-based environment that closely resembled actual online settings in the country of study. Using information processing data obtained with tracking software, we identify three consumer segments differing along two dimensions – the extent dimension, referring to the overall effort invested in information processing, and the focus dimension, referring to the degree to which someone focuses on the best available options. The three subgroups of respondents can be characterized as follows: (1) consumers with a low-effort and low-focus information processing strategy (n = 137); (2) consumers with a moderate-effort and high-focus information processing strategy (n = 124); and (3) consumers with high-effort and low-focus information processing strategy (n = 102). The three groups differed not only in their information processing but also in the quality of their decisions. In line with the assumption of ecological rationality, most successful search strategies were not exhaustive, but instead involved the focused selection and processing of a medium amount of information. Implications for effective consumer information are provided.
Background: Mobile technology gives researchers unimagined opportunities to design new interventions to increase physical activity. Unfortunately, it is still unclear which elements are useful to initiate and maintain behavior change. Objective: In this meta-analysis, we investigated randomized controlled trials of physical activity interventions that were delivered via mobile phone. We analyzed which elements contributed to intervention success. Methods: After searching four databases and science networks for eligible studies, we entered k=49 studies with N=5764 participants into a random effects meta-analysis, controlling for baseline group differences. We also calculated a meta-regression with categories of intervention techniques for behavior change (education, goals, feedback/prompts, rewards, and social cues) as moderators. Results: We found a small overall effect of Hedges' g=.29, (95% CI: .20 to .37) which reduced to g=.22 after correcting for publication bias. None of the predefined elements (e.g., education) led to more intervention success by themselves, but a combination of goals and rewards showed that using goals and rewards simultaneously increased intervention efficacy by g=.31 compared to using none of the two elements. Conclusion: Overall, mHealth interventions to increase physical activity have a small to moderate effect. However, including functions related to goals and rewards led to greater intervention success. More research is needed to look at single behavior change techniques instead of categories. To achieve this, reporting interventions in trial registrations and articles should be more structured and more thorough.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.