The response of coastal wetlands to sea-level rise during the twenty-first century remains uncertain. Global-scale projections suggest that between 20 and 90 per cent (for low and high sea-level rise scenarios, respectively) of the present-day coastal wetland area will be lost, which will in turn result in the loss of biodiversity and highly valued ecosystem services. These projections do not necessarily take into account all essential geomorphological and socio-economic system feedbacks. Here we present an integrated global modelling approach that considers both the ability of coastal wetlands to build up vertically by sediment accretion, and the accommodation space, namely, the vertical and lateral space available for fine sediments to accumulate and be colonized by wetland vegetation. We use this approach to assess global-scale changes in coastal wetland area in response to global sea-level rise and anthropogenic coastal occupation during the twenty-first century. On the basis of our simulations, we find that, globally, rather than losses, wetland gains of up to 60 per cent of the current area are possible, if more than 37 per cent (our upper estimate for current accommodation space) of coastal wetlands have sufficient accommodation space, and sediment supply remains at present levels. In contrast to previous studies, we project that until 2100, the loss of global coastal wetland area will range between 0 and 30 per cent, assuming no further accommodation space in addition to current levels. Our simulations suggest that the resilience of global wetlands is primarily driven by the availability of accommodation space, which is strongly influenced by the building of anthropogenic infrastructure in the coastal zone and such infrastructure is expected to change over the twenty-first century. Rather than being an inevitable consequence of global sea-level rise, our findings indicate that large-scale loss of coastal wetlands might be avoidable, if sufficient additional accommodation space can be created through careful nature-based adaptation solutions to coastal management.
We introduce a novel approach to statistically assess the non-linear interaction of tide and non-tidal residual in order to quantify its contribution to extreme sea levels and hence its role in modulating coastal protection levels, globally. We demonstrate that extreme sea levels are up to 30% (or 70 cm) higher if non-linear interactions are not accounted for (e.g., by independently adding astronomical and non-astronomical components, as is often done in impact case studies). These overestimates are similar to recent sea-level rise projections to 2100 at some locations. Furthermore, we further find evidence for changes in this non-linear interaction over time, which has the potential for counteracting the increasing flood risk associated with sea-level rise and tidal and/or meteorological changes alone. Finally, we show how accounting for non-linearity in coastal impact assessment modulates coastal exposure, reducing recent estimates of global coastal flood costs by~16%, and population affected by~8%.
The effectiveness of stringent climate stabilization scenarios for coastal areas in terms of reduction of impacts/adaptation needs and wider policy implications has received little attention. Here we use the Warming Acidification and Sea Level Projector Earth systems model to calculate large ensembles of global sea-level rise (SLR) and ocean pH projections to 2300 for 1.5°C and 2.0°C stabilization scenarios, and a reference unmitigated RCP8.5 scenario. The potential consequences of these projections are then considered for global coastal flooding, small islands, deltas, coastal cities and coastal ecology. Under both stabilization scenarios, global mean ocean pH (and temperature) stabilize within a century. This implies significant ecosystem impacts are avoided, but detailed quantification is lacking, reflecting scientific uncertainty. By contrast, SLR is only slowed and continues to 2300 (and beyond). Hence, while coastal impacts due to SLR are reduced significantly by climate stabilization, especially after 2100, potential impacts continue to grow for centuries. SLR in 2300 under both stabilization scenarios exceeds unmitigated SLR in 2100. Therefore, adaptation remains essential in densely populated and economically important coastal areas under climate stabilization. Given the multiple adaptation steps that this will require, an adaptation pathways approach has merits for coastal areas.This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’.
Carbon sequestration and storage in mangroves, salt marshes and seagrass meadows is an essential coastal ‘blue carbon’ ecosystem service for climate change mitigation. Here we offer a comprehensive, global and spatially explicit economic assessment of carbon sequestration and storage in three coastal ecosystem types at the global and national levels. We propose a new approach based on the country-specific social cost of carbon that allows us to calculate each country’s contribution to, and redistribution of, global blue carbon wealth. Globally, coastal ecosystems contribute a mean ± s.e.m. of US$190.67 ± 30 bn yr−1 to blue carbon wealth. The three countries generating the largest positive net blue wealth contribution for other countries are Australia, Indonesia and Cuba, with Australia alone generating a positive net benefit of US$22.8 ± 3.8 bn yr−1 for the rest of the world through coastal ecosystem carbon sequestration and storage in its territory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.