SummaryPlatinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS). All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.
Fundamental understanding of non-precious metal catalysts for the oxygen reduction reaction (ORR) is the nub for the successful replacement of noble Pt in fuel cells and, therefore, of central importance for a technological breakthrough. Herein, the degradation mechanisms of a model high-performance Fe-N-C catalyst have been studied with online inductively coupled plasma mass spectrometry (ICP-MS) and differential electrochemical mass spectroscopy (DEMS) coupled to a modified scanning flow cell (SFC) system. We demonstrate that Fe leaching from iron particles occurs at low potential (<0.7 V) without a direct adverse effect on the ORR activity, while carbon oxidation occurs at high potential (>0.9 V) with a destruction of active sites such as FeNx Cy species. Operando techniques combined with identical location-scanning transmission electron spectroscopy (IL-STEM) identify that the latter mechanism leads to a major ORR activity decay, depending on the upper potential limit and electrolyte temperature. Stable operando potential windows and operational strategies are suggested for avoiding degradation of Fe-N-C catalysts in acidic medium.
For a successful replacement of Pt, tremendous efforts have hitherto been made to develop high-performing Fe-N-C catalysts for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs). In comparison to the remarkable progress in activity, the stability of Fe-N-C catalysts still remains critical, however. Fe demetallation in acidic medium is hypothesized to be one critical factor for the overall lifetime. In contrast to the general belief, we herein demonstrate using an operando spectroscopic analysis that catalytically inactive Fe particles exposed to acid electrolytes cannot be fully removed by acid washing due to a relatively high open circuit potential (ca. 0.9 VRHE) leading to the formation of insoluble ferric species, whereas these particles dissolve under PEMFC operating conditions (E cathode < 0.7 VRHE) due to operando reduction to soluble ferrous cations. To overcome this issue, we demonstrate two approaches: (i) synthesis of Fe-N-C catalysts free of Fe particles and (ii) postsynthesis removal of exposed Fe particles through the control of potential using an external potentiostat or an internal reducing agent (i.e., SnCl2). Operando spectroscopic analyses verified that Fe demetallation during a given voltammetric protocol was dramatically decreased for both synthetically and postsynthetically modified Fe-N-C catalysts, while the initial ORR activity did not significantly change. However, all of these catalysts showed similar performance decay over short-term PEMFC durability tests, demonstrating the lack of a role played by ferrous cations leached from inactive Fe particles on catalyst deactivation. This supports the view that the activity is mainly imparted by FeN x C y moieties. Nevertheless, the presented guidelines are generally applicable to the whole class of Fe-N-C catalysts in order to minimize Fe demetallation in PEMFCs, which provides important advances for the future design of stable electrocatalytic systems for long-term operation.
A comprehensive study of the degradation of a highly active Fe/N/C catalyst in acid medium is reported. An accelerated aging protocol was applied in the temperature range of 20 to 80 °C. From fundamental rotating-disc electrode studies and polymer electrolyte membrane fuel cell investigations combined with identical-location electron microscopy and Mößbauer spectroscopy at various stages of degradation, important insights into the structural and chemical changes of the catalyst were obtained. Most importantly, the degradation is strongly enhanced at elevated temperature, which is correlated to (i) increased carbon-corrosion rate and (ii) parallel non-preferential dissolution of the FeNx-based active sites. The degradation not only leads to a decreased ORR kinetics over time but also induces significant charge- and mass-transport resistances due to the collapse of the electrode structure.
We provide a comprehensive durability assessment dedicated to a promising class of electrocatalysts for the oxygen reduction reaction (i.e., porous platinum nanoparticles). The stability of these nanoengineered open structures is tested under two accelerated degradation test conditions (ADT), particularly selected to mimic the potential regimes experienced by the catalyst during the operative life of a fuel cell (i.e., load cycles (up to 1.0 V RHE ) and start-up cycles (up to 1.4 V RHE )). To understand the evolution of the electrochemical performance, the catalyst properties are investigated by means of fundamental rotating disc electrode studies, identical location-transmission electron microscopy (IL-TEM) coupled with electron energy loss spectroscopy chemical mapping (IL-EELS), and post-use chemical analysis and online highly sensitive potential resolved dissolution concentration monitoring by scanning flow cell inductively coupled plasma-mass spectrometry (SFC-ICP-MS). The experimental results on the nanoporous Pt revealed distinctive degradation mechanisms that could potentially affect a wide range of other nanoengineered open structures. The study concludes that, although providing promising activity performance, under the relevant operational conditions of fuel cells, the nanoporosity is only metastable and subjected to a progressive reorganization toward the minimization of the nanoscale curvature. The rate and pathways of this specific degradation mechanism together with other well-known degradation mechanisms like carbon corrosion and platinum dissolution are strongly dependent on the selected upper limit potential, leading to distinctly different durability performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.