Stress impairs wound healing of cutaneous lesions; however, the mechanism is still unclear. The aim of this study was to evaluate the effects of rotational stress on cutaneous wound healing in mice and propose a mechanism. Male mice were spun at 45 rpm for 15 min every hour beginning 3 days before wounding until euthanasia. Control animals were not subjected to stress. To confirm that catecholamines participate in stress-induced delay of wound healing, mice were treated daily with propranolol. An excisional lesion was created and measured. Seven and 14 days later, animals were killed and lesions collected. Sections were stained with hematoxylin-eosin and immunostained for alpha-smooth muscle actin and proliferating cell nuclear antigen. Matrix metalloproteinase (MMP)-2 and -9 activity, nitrite levels, and tumor necrosis factor-alpha (TNF-alpha) expression were measured in the wounds. In addition, murine skin fibroblast cultures were treated with high levels of epinephrine and fibroblast activity was evaluated. Stressed mice exhibited reduced locomotor activity and increased normetanephrine plasma levels. Rotational stress was associated with decreased wound contraction, reduced re-epithelialization, reduced MMP-2 and MMP-9 activation, but with strongly increased nitrite levels. Furthermore, inflammatory cell infiltration, TNF-alpha expression, myofibroblastic differentiation, and angiogenesis were all delayed in the stress group. Propranolol administration reversed the deleterious effects of stress on wound contraction and re-epithelialization. High epinephrine concentrations increased murine skin fibroblast proliferation and nitric oxide synthesis, and strongly inhibited skin fibroblast migration and both pro- and active MMP-2. In conclusion, rotational stress impairs cutaneous wound healing due to epinephrine increased levels.
Deficits in learning and memory have been extensively observed in animal models of fetal alcohol spectrum disorders (FASD). Here we use the Morris Maze to test whether Vinpocetine, a Phosphodiesterase type 1 inhibitor, restores learning performance in rats exposed to alcohol during the third trimester equivalent of human gestation. Long Evans rats received ethanol (5 g/Kg ip) or saline on alternate days from postnatal day (P) 4 to P10. Two weeks later (P25), the latency to find a hidden platform was evaluated (2 trials per day spaced at 40-min inter-trial intervals) during 4 consecutive days. Vinpocetine treatment started on the first day of behavioral testing: animals received vinpocetine (20 mg/kg ip) or vehicle solution every other day until the end of behavioral procedures. Early alcohol exposure significantly affected the performance to find the hidden platform. The average latency of ethanol exposed animals was significantly higher than that observed for the control group. Treatment of alcohol-exposed animals with vinpocetine restored their performance to control levels. Our results show that inhibition of PDE1 improves learning and memory deficits in rats early exposed to alcohol and provide evidence for the potential therapeutic use of vinpocetine in FASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.