The study of the preparation phase of large earthquakes is essential to understand the physical processes involved, and potentially useful also to develop a future reliable short-term warning system. Here we analyse electron density and magnetic field data measured by Swarm three-satellite constellation for 4.7 years, to look for possible in-situ ionospheric precursors of large earthquakes to study the interactions between the lithosphere and the above atmosphere and ionosphere, in what is called the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC). We define these anomalies statistically in the whole space-time interval of interest and use a Worldwide Statistical Correlation (WSC) analysis through a superposed epoch approach to study the possible relation with the earthquakes. We find some clear concentrations of electron density and magnetic anomalies from more than two months to some days before the earthquake occurrences. Such anomaly clustering is, in general, statistically significant with respect to homogeneous random simulations, supporting a LAIC during the preparation phase of earthquakes. By investigating different earthquake magnitude ranges, not only do we confirm the well-known Rikitake empirical law between ionospheric anomaly precursor time and earthquake magnitude, but we also give more reliability to the seismic source origin for many of the identified anomalies.
Objective: The aim of the present study was to assess the incidence of abnormal QTc interval values in a population of subjects on a long-term methadone maintenance treatment, as a single therapy, and with methadone dosages ranging between 10 and 600 mg/daily (mean ± SD = 87 ± 76). Method: Basal ECG recordings were carried out in 83 former heroin addicts on long-term successful methadone maintenance therapy for at least 6 months, while no other known QT-prolonging agent was being administered. Results: Eighty-three percent of the subjects had a more prolonged QT interval than the reference values for persons of the same sex and age. Only 2 patients displayed a QTc interval of >500 ms. No correlation emerged between QTc values and methadone dosages. Conclusion: Patients on long-term methadone maintenance treatment show longer than expected QTc interval values. This data, associated with the finding that methadone is a rather potent inhibitor of HERG potassium channels and that it may induce torsade de pointes in predisposed subjects, supports the recommendation that patients entering methadone treatment (MT) are screened for cardiac risk factors. ECG might be considered in ongoing MT patients especially before starting QT-prolonging medications.
This work presents a contribution to the understanding of the ionospheric triggering of L-band scintillation in the region over São Paulo state in Brazil, under high solar activity. In particular, a climatological analysis of Global Navigation Satellite Systems (GNSS) data acquired in 2012 is presented to highlight the relationship between intensity and variability of the total electron content (TEC) gradients and the occurrence of ionospheric scintillation. The analysis is based on the GNSS data acquired by a dense distribution of receivers and exploits the integration of a dedicated TEC calibration technique into the Ground Based Scintillation Climatology (GBSC), previously developed at the Istituto Nazionale di Geofisica e Vulcanologia. Such integration enables representing the local ionospheric features through climatological maps of calibrated TEC and TEC gradients and of amplitude scintillation occurrence. The disentanglement of the contribution to the TEC variations due to zonal and meridional gradients conveys insight into the relation between the scintillation occurrence and the morphology of the TEC variability. The importance of the information provided by the TEC gradients variability and the role of the meridional TEC gradients in driving scintillation are critically described.
We contribute to the debate on the identification of phase scintillation induced by the ionosphere on the global navigation satellite system (GNSS) by introducing a phase detrending method able to provide realistic values of the phase scintillation index at high latitude. It is based on the fast iterative filtering signal decomposition technique, which is a recently developed fast implementation of the well-established adaptive local iterative filtering algorithm. FIF has been conceived to decompose nonstationary signals efficiently and provide a discrete set of oscillating functions, each of them having its frequency. It overcomes most of the problems that arise when using traditional time-frequency analysis techniques and relies on a consolidated mathematical basis since its a priori convergence and stability have been proved. By relying on the capability of FIF to efficiently identify the frequencies embedded in the GNSS raw phase, we define a method based on the FIF-derived spectral features to identify the proper cutoff frequency for phase detrending. To test such a method, we analyze the data acquired from GPS and Galileo signals over Antarctica during the September 2017 storm by the ionospheric scintillation monitor receiver (ISMR) located in Concordia Station (75.10° S, 123.33° E). Different cases of diffraction and refraction effects are provided, showing the capability of the method in deriving a more accurate determination of the index. We found values of cutoff frequency in the range of 0.73-0.83 Hz, providing further evidence of the inadequacy of the choice of 0.1 Hz, which is often used when dealing with ionospheric scintillation monitoring at high latitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.