Simple, simpler, simplest: Spontaneous pattern formation in a commonplace system Am. J. Phys. 80, 578 (2012) Determination of contact angle from the maximum height of enlarged drops on solid surfaces Am. J. Phys. 80, 284 (2012) Aerodynamics in the classroom and at the ball park Am. J. Phys. 80, 289 (2012) The added mass of a spherical projectile Am.We use the arithmetic-geometric mean to derive approximate solutions for the period of the simple pendulum. The fast convergence of the arithmetic-geometric mean yields accurate solutions. We also discuss the invention of the pendulum clock by Christiaan Huygens in 1656-1657.
This paper reviews the method of surface Laplacian differentiation to study EEG. We focus on topics that are helpful for a clear understanding of the underlying concepts and its efficient implementation, which is especially important for EEG researchers unfamiliar with the technique. The popular methods of finite difference and splines are reviewed in detail. The former has the advantage of simplicity and low computational cost, but its estimates are prone to a variety of errors due to discretization. The latter eliminates all issues related to discretization and incorporates a regularization mechanism to reduce spatial noise, but at the cost of increasing mathematical and computational complexity. These and several others issues deserving further development are highlighted, some of which we address to the extent possible. Here we develop a set of discrete approximations for Laplacian estimates at peripheral electrodes and a possible solution to the problem of multiple-frame regularization. We also provide the mathematical details of finite difference approximations that are missing in the literature, and discuss the problem of computational performance, which is particularly important in the context of EEG splines where data sets can be very large. Along this line, the matrix representation of the surface Laplacian operator is carefully discussed and some figures are given illustrating the advantages of this approach. In the final remarks, we briefly sketch a possible way to incorporate finite-size electrodes into Laplacian estimates that could guide further developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.