We apply the causal interpretation of quantum mechanics to homogeneous and isotropic quantum cosmology where the sources of the gravitational field are either dust or radiation perfect fluids. We find non-singular quantum trajectories which tends to the classical one when the scale factor becomes much larger then the Planck length. In this situation, the quantum potential becomes negligible. There are no particle horizons. As radiation is a good approximation for the matter content of the early universe, this result suggests that the universe can be eternal due to quantum effects. PACS number(s): 98.80.H, 03.65.Bz
This paper reviews the method of surface Laplacian differentiation to study EEG. We focus on topics that are helpful for a clear understanding of the underlying concepts and its efficient implementation, which is especially important for EEG researchers unfamiliar with the technique. The popular methods of finite difference and splines are reviewed in detail. The former has the advantage of simplicity and low computational cost, but its estimates are prone to a variety of errors due to discretization. The latter eliminates all issues related to discretization and incorporates a regularization mechanism to reduce spatial noise, but at the cost of increasing mathematical and computational complexity. These and several others issues deserving further development are highlighted, some of which we address to the extent possible. Here we develop a set of discrete approximations for Laplacian estimates at peripheral electrodes and a possible solution to the problem of multiple-frame regularization. We also provide the mathematical details of finite difference approximations that are missing in the literature, and discuss the problem of computational performance, which is particularly important in the context of EEG splines where data sets can be very large. Along this line, the matrix representation of the surface Laplacian operator is carefully discussed and some figures are given illustrating the advantages of this approach. In the final remarks, we briefly sketch a possible way to incorporate finite-size electrodes into Laplacian estimates that could guide further developments.
The activity of collections of synchronizing neurons can be represented by weakly coupled nonlinear phase oscillators satisfying Kuramoto's equations. In this article, we build such neural-oscillator models, partly based on neurophysiological evidence, to represent approximately the learning behavior predicted and confirmed in three experiments by well-known stochastic learning models of behavioral stimulus-response theory. We use three Kuramoto oscillators to model a continuum of responses, and we provide detailed numerical simulations and analysis of the three-oscillator Kuramoto problem, including an analysis of the stability points for different coupling conditions. We show that the oscillator simulation data are well-matched to the behavioral data of the three experiments.
We apply the causal interpretation of quantum mechanics to homogeneous quantum cosmology and show that the quantum theory is independent of any time-gauge choice and there is no issue of time. We exemplify this result by studying a particular minisuperspace model where the quantum potential driven by a prescribed quantum state prevents the formation of the classical singularity, independently on the choice of the lapse function. Hence, within the framework of the causal interpretation of quantum cosmology, the fast-slow-time gauge conjecture is incorrect for homogeneous minisuperspace models. * PACS numbers: 98.80.H, 03.65.Bz 201 Int. J. Mod. Phys. D 1998.07:201-213. Downloaded from www.worldscientific.com by NANYANG TECHNOLOGICAL UNIVERSITY on 08/25/15. For personal use only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.