Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, ΛCDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of ΛCDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled.Keywords: cosmology -dark energy -cosmological constant problem -modified gravitydark matter -early universe Cosmology has been both blessed and cursed by the establishment of a standard model: ΛCDM. On the one hand, the model has turned out to be extremely predictive, explanatory, and observationally robust, providing us with a substantial understanding of the formation of large-scale structure, the state of the early Universe, and the cosmic abundance of different types of matter and energy. It has also survived an impressive battery of precision observational tests -anomalies are few and far between, and their significance is contentious where they do arise -and its predictions are continually being vindicated through the discovery of new effects (B-mode polarization [1] and lensing [2,3] of the cosmic microwave background (CMB), and the kinetic Sunyaev-Zel'dovich effect [4] being some recent examples). These are the hallmarks of a good and valuable physical theory.On the other hand, the model suffers from profound theoretical difficulties. The two largest contributions to the energy content at late times -cold dark matter (CDM) and the cosmological constant (Λ) -have entirely mysterious physical origins. CDM has so far evaded direct detection by laboratory experiments, and so the particle field responsible for it -presumably a manifestation of "beyond the standard model" particle physics -is unknown. Curious discrepancies also appear to exist between the predicted clustering properties of CDM on small scales and observations. The cosmological constant is even more puzzling, giving rise to quite simply the biggest problem in all of fundamental physics: the question of why Λ appears to take such an unnatural value [5,6,7]. Inflation, the theory of the very early Universe, has also been criticized for being fine-tuned and under-predictive [8], and appears to leave many problems either unsolved or fundamentally unresolvable. These problems are indicative of a crisis.From January 14th-17th 2015, we held a conference in Oslo, Norway to surve...
Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
Several extensions of the standard cosmological model include scalar fields as new degrees of freedom in the underlying gravitational theory. A particular class of these scalar field theories include screening mechanisms intended to hide the scalar field below observational limits in the solar system, but not on galactic scales, where data still gives the freedom to find possible signatures of their presence. To make predictions to compare with observations coming from galactic and clusters scales (i.e. in the non-linear regime of cosmological evolution), cosmological N-body simulations are needed, for which codes that can solve for the scalar field must be developed. We present a new implementation of scalar-tensor theories of gravity that include screening mechanisms. The code is based on the already existing code RAMSES, to which we have added a non-linear multigrid solver that can treat a large class of scalar tensor theories of modified gravity. We present details of the implementation and the tests that we made to the code. As application of the new code, we studied the influence that two particular modified gravity theories, the symmetron and f (R) gravity, have on the shape of cluster sized dark matter haloes and found consistent results with previous estimations made with a static analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.