Given the ubiquitous nature of infrastructure networks in today's society, there is a global need to understand, quantify, and plan for the resilience of these networks to disruptions. This work defines network resilience along dimensions of reliability, vulnerability, survivability, and recoverability, and quantifies network resilience as a function of component and network performance. The treatment of vulnerability and recoverability as random variables leads to stochastic measures of resilience, including time to total system restoration, time to full system service resilience, and time to a specific α% resilience. Ultimately, a means to optimize network resilience strategies is discussed, primarily through an adaption of the Copeland Score for nonparametric stochastic ranking. The measures of resilience and optimization techniques are applied to inland waterway networks, an important mode in the larger multimodal transportation network upon which we rely for the flow of commodities. We provide a case study analyzing and planning for the resilience of commodity flows along the Mississippi River Navigation System to illustrate the usefulness of the proposed metrics.
Recent studies in system resilience have proposed metrics to understand the ability of systems to recover from a disruptive event, often offering a qualitative treatment of resilience. This work provides a quantitative treatment of resilience and focuses specifically on measuring resilience in infrastructure networks. Inherent cost metrics are introduced: loss of service cost and total network restoration cost. Further, "costs" of network resilience are often shared across multiple infrastructures and industries that rely upon those networks, particularly when such networks become inoperable in the face of disruptive events. As such, this work integrates the quantitative resilience approach with a model describing the regional, multi-industry impacts of a disruptive event to measure the interdependent impacts of network resilience. The approaches discussed in this article are deployed in a case study of an inland waterway transportation network, the Mississippi River Navigation System.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.