Abstract:The present study is focused on the development of a new control-oriented semi-empirical model to predict nitrogen oxide (NOx) emissions in a light-duty diesel engine under both steady-state and transient conditions. The model is based on the estimation of the deviations of NOx emissions, with respect to the nominal engine-calibration map values, as a function of the deviations of the intake oxygen concentration and of the combustion phasing. The model also takes into account the effects of engine speed, total injected quantity, and ambient temperature and humidity. The approach has been developed and assessed on an Fiat Powertrain Technologies (FPT) Euro VI 3.0 L diesel engine for light-duty applications, in the frame of a research project in collaboration with FPT Industrial.The model has also been tested on a rapid prototyping device, and it was shown that it requires a very short computational time, thus being suitable for implementation on the Engine Control Unit (ECU) for real-time NOx control tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.