A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), incylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent. The real-time combustion model has been first calibrated and assessed at both steady-state and transient conditions, on the basis of experimental data acquired at the highly dynamic test bench of ICEAL-PT (Internal Combustion Engines Advanced Laboratory -Politecnico di Torino), in the frame of a research activity in collaboration with FPT Industrial. The model has then been used to realize a model-based control of BMEP and NOx emissions. In particular, the controller provides the injected fuel quantity and the injection timing of the main pulse, for given targets of BMEP and engine-out NOx levels. Finally, the developed controller has been tested on a rapid prototyping device (ETAS ES910) through HiL (Hardware-in-the-Loop) techniques, and demonstrated to have realtime capability.
Nowadays, detailed kinetics is necessary for a proper estimation of both flame structure and pollutant formation in compression ignition engines. However, large mechanisms and the need to include turbulence/chemistry interaction introduce significant computational overheads. For this reason, tabulated kinetics is employed as a possible solution to reduce the CPU time even if table discretization is generally limited by memory occupation. In this work the authors applied tabulated homogeneous reactors (HR) in combination with different turbulent-chemistry interaction approaches to model non-premixed turbulent combustion. The proposed methodologies represent good compromises between accuracy, required memory and computational time. The experimental validation was carried out by considering both constant-volume vessel and Diesel engine experiments. First, the ECN Spray A configuration was simulated at different operating conditions and results from different flame structures are compared with experimental data of ignition delay, flame lift-off, heat release rates, radicals and soot distributions. Afterwards, engine simulations were carried out and computed data are validated by cylinder pressure and heat release rate profiles.
A real-time combustion model was assessed and applied to simulate BMEP (Brake Mean Effective Pressure) and NOx (Nitrogen Oxide) emissions in an 11.0 L FPT Cursor 11 diesel engine for heavy-duty applications. The activity was carried out in the frame of the IMPERIUM H2020 EU Project. The developed model was used as a starting base to derive a model-based combustion controller, which is able to control indicated mean effective pressure and NOx emissions by acting on the injected fuel quantity and main injection timing. The combustion model was tested and assessed at steady-state conditions and in transient operation over several load ramps. The average root mean square error of the model is of the order of 110 ppm for the NOx simulation and of 0.3 bar for the BMEP simulation Moreover, a statistical robustness analysis was performed on the basis of the expected input parameter deviations, and a calibration sensitivity analysis was carried out, which showed that the accuracy is almost unaffected when reducing the calibration dataset by about 80%. The model was also tested on a rapid prototyping device and it was verified that it features real-time capability, since the computational time is of the order of 300–400 µs. Finally, the basic functionality of the model-based combustion controller was tested offline at steady-state conditions.
Abstract:The present study is focused on the development of a new control-oriented semi-empirical model to predict nitrogen oxide (NOx) emissions in a light-duty diesel engine under both steady-state and transient conditions. The model is based on the estimation of the deviations of NOx emissions, with respect to the nominal engine-calibration map values, as a function of the deviations of the intake oxygen concentration and of the combustion phasing. The model also takes into account the effects of engine speed, total injected quantity, and ambient temperature and humidity. The approach has been developed and assessed on an Fiat Powertrain Technologies (FPT) Euro VI 3.0 L diesel engine for light-duty applications, in the frame of a research project in collaboration with FPT Industrial.The model has also been tested on a rapid prototyping device, and it was shown that it requires a very short computational time, thus being suitable for implementation on the Engine Control Unit (ECU) for real-time NOx control tasks.
A contemporary approach for improving and developing the understanding of heavy-duty Diesel engine combustion processes is to use a concerted effort between experiments at well-characterized boundary conditions and detailed, high-fidelity models. In this paper, combustion processes of n-dodecane fuel sprays under heavy-duty Diesel engine conditions are investigated using this approach. Reacting fuel sprays are studied in a constant-volume pre-burn vessel at an ambient temperature of 900 K with three reference cases having specific combinations of injection pressure, ambient density and ambient oxygen concentration (80, 150 & 160 MPa-22.8 & 40 kg/m 3-15 & 20.5% O 2). In addition to a free jet, two different walls were placed inside the combustion vessel to study flame-wall interaction. Experimentally, low-and high-temperature reaction product distributions are imaged simultaneously using single-shot planar laser-induced fluorescence (PLIF) of formaldehyde and high-speed line-ofsight imaging of the chemically-excited hydroxyl radical (OH*). Interference of soot incandescence in experimental OH* recordings is assessed to improve interpretation of the results. Interference by poly-cyclic aromatic hydrocarbon (PAH) LIF and soot radiation is mostly evaded by evaluating flame structures shortly after ignition for one of the studied cases, but presumably included in others. Simulations were performed using a recently developed computational fluid dynamics (CFD) methodology with detailed chemistry and turbulence-chemistry interaction. Apart from the capability to model flame structures and combustion indicators based on optical diagnostics, heat-release rate trends are predicted accurately at varying boundary conditions. Significant variation in the distribution of low-temperature combustion products under heavy-duty operating conditions are explained using both CFD simulations and a one-dimensional jet model. Fuel pump Resato P16-400-2 Fuel injector Bosch CRI2 solenoid (0.205 mm) Injector driver EFS IPoD 8532 Fuel pressure sensor Kistler 4067E3000 Vessel pressure sensor Kistler 6041 AU20 Burst disk rupture pressure 35 MPa Vessel volume 1260 cc Mixing fan motor Maxon motor (custom) Inlet and exhaust valves Sitec 710.3124-D
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.