This article addresses timetable synchronization in public transportation, an important problem in modern smart cities, in order to guarantee a proper quality of service to citizens. Two variants of the bus timetabling synchronization problem considering extended transfer zones are studied: optimizing offsets and optimizing offsets and headways for each line. An exact mixed integer programming and an evolutionary algorithm are developed to solve both problem variants. The algorithms are evaluated on 45 instances of a real case study, the intelligent transportation system of Montevideo, Uruguay. Experimental results reported significant improvements over the current timetable implemented by the city administration. The number of successful synchronizations improved up to 66.6% and 179.9% for the first and second problem variant, respectively. The average waiting times for transfers improved, especially in tight problem instances (up to 57.8% and 158.3% for the first and second problem variant, respectively). The proposed planning methods are useful to help decision makers to configure public transportation systems.
ABSTRACT. Different approaches for deploying resilient optical networks of low cost constitute a traditional group of NP-Hard problems that have been widely studied. Most of them are based on the construction of low cost networks that fulfill connectivity constraints. However, recent trends to virtualize optical networks over the legacy fiber infrastructure, modified the nature of network design problems and turned inappropriate many of these models and algorithms. In this paper we study a design problem arising from the deployment of an IP/MPLS network over an existing DWDM infrastructure. Besides cost and resiliency, this problem integrates traffic and capacity constraints. We present: an integer programming formulation for the problem, theoretical results, and describe how several metaheuristics were applied in order to find good quality solutions, for a real application case of a telecommunications company.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.