A cornerstone in epidemic modeling is the classical susceptible-infected-removed model, or SIR. In this model, individuals are divided into three classes: susceptible (those who can be infected), infected, and removed (those who suffered the infection and recovered, gaining immunity from further contact with infected individuals). Transitions S → I → R occur at constant rates γ S , γ I . The SIR model is both simple and useful to understand cascading failures in a network. Nevertheless, a shortcoming is the unrealistic assumption of random contacts in a fully mixed large population. More realistic models are available from authoritative literature in the field. They consider a graph and an epidemic spread governed by probabilistic rules. In this paper, a combinatorial optimization problem is introduced using graph-theoretic terminology, inspired by an extremal analysis of epidemic modeling. The contributions are threefold. First, a general node immunization problem is defined for node immunization under budget requirements, using probabilistic networks. The goal is to minimize the expected number of deaths under a particular choice of nodes in the system to be immunized. In the second stage, a highly virulent environment leads to a purely combinatorial problem without probabilistic law, called the graph fragmentation problem (GFP). We prove the corresponding decision version for the GFP belongs to the class of N P-complete problems. As a corollary, SIR-based models also belong to this set. Third, a GRASP (greedy randomized adaptive search procedure) heuristic enriched with a path-relinking post-optimization phase is developed for the GFP. Finally, an experimental analysis is carried out under graphs taken from real-life applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.