To obtain low and high parasite loads in the acute phase of Chagas’ disease, A/J mice were infected with 103 or 105 Trypanosoma cruzi trypomastigotes of the Y strain and treated on day 6 with benznidazol. One year later, chronically infected mice were screened for subpatent parasitemias, tissue pathology, and immune response. Mice infected with the high parasite inoculum showed higher levels of chronic parasitemias, heart and striated muscle inflammation, and activation of the immune system than did mice infected with the low inoculum. Concerning the activation of the immune system, the main findings for high-dose-infected mice were (i) increased numbers of splenocytes, with preferential expansion of CD8+ and B220− CD5− cells, many of them bearing a macrophage phenotype; (ii) higher frequencies of B (B220+), CD4+, and CD8+ large lymphocytes; (iii) a shift of CD4+ cells towards a CD45RBLow phenotype; (iv) increased frequencies of both CD45RBLow and CD45RBHigh large CD4+cells; (v) augmented numbers of total immunoglobulin (Ig)-secreting cells, with predominance of IgG2a-producing cells; and (vi) increased production of gamma interferon and interleukin 4. In addition, these mice presented lower IgM and higher IgG2a and IgG1 parasite-specific serum antibody levels. Our results indicate that the parasite load at the acute phase of T. cruzi infection influences the activation of the immune system and development of Chagas’ disease pathology at the late chronic phase of the disease.
Malaria is a serious disease, caused by the parasite of the genus Plasmodium, which was responsible for 440,000 deaths in 2015. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the main clinical complications in severe malaria. The murine model DBA/2 reproduces the clinical signs of ALI/ARDS in humans, when infected with Plasmodium berghei ANKA. High levels of HO-1 were reported in cases of severe malaria. Our data indicated that the HO-1 mRNA and protein expression are increased in mice that develop malaria-associated ALI/ARDS (MA-ALI/ARDS). Additionally, the hemin, a HO-1 inducing drug, prevented mice from developing MA-ALI/ARDS when administered prior to the development of MA-ALI/ARDS in this model. Also, hemin treatment showed an amelioration of respiratory parameters in mice, high VEGF levels in the sera, and a decrease in vascular permeability in the lung, which are signs of ALI/ARDS. Therefore, the induction of HO-1 before the development of MA-ALI/ARDS could be protective. However, the increased expression of HO-1 on the onset of MA-ALI/ARDS development may represent an effort to revert the phenotype of this syndrome by the host. We therefore confirm that HO-1 inducing drugs could be used for prevention of MA-ALI/ARDS in humans.
Highly virulent strains of Trypanosoma cruzi are frequently used as murine models of Chagas’ disease. However, these strains do not fully represent the spectrum of parasites involved in the human infection. In this paper, we analysed parasitaemia, mortality, tissue pathology and parasite‐specific IgG serum levels in immune‐deficient mice infected with Sylvio X10/4 parasites, a T. cruzi derived from a chagasic patient that yields very low parasitaemias and in C3H/HePAS mice induces a chronic cardiopathy resembling the human disease. IFN‐γ was identified as a crucial element for parasite control as its absence determined a drastic increase in parasitaemia, tissue parasitism, leukocyte infiltrates at the heart and striated muscles and mortality. The lack of IFN‐γ or IL‐12p40, a molecule shared by IL‐12 and IL‐23, also resulted in spinal cord lesions and a progressive paralysis syndrome. Whereas IgG2a was the main Ig isotype in infected C57BL/6 mice, IL‐12p40‐KO mice produced IgG2a and IgG1 and IFN‐γ‐KO mice produced only IgG1. The IFN‐γ‐protective effect was not essentially mediated by nitric oxide (NO), inasmuch as infected iNOS‐KO mice showed no parasitaemia and low tissue damage. Mice deficient in CD4+ or CD8+ T cells showed an intermediate phenotype with increased mortality and tissue pathology but no parasitaemia. Interestingly, CD28‐KO mice were unable to produce anti‐T. cruzi IgG antibodies but presented moderate tissue pathology and managed to control the infection. Thus, differently from infections with high virulence parasites, neither IgG, NO nor CD28‐mediated signalling are essential for the non‐sterile control of Sylvio X10/4 parasites.
Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.