Highly virulent strains of Trypanosoma cruzi are frequently used as murine models of Chagas’ disease. However, these strains do not fully represent the spectrum of parasites involved in the human infection. In this paper, we analysed parasitaemia, mortality, tissue pathology and parasite‐specific IgG serum levels in immune‐deficient mice infected with Sylvio X10/4 parasites, a T. cruzi derived from a chagasic patient that yields very low parasitaemias and in C3H/HePAS mice induces a chronic cardiopathy resembling the human disease. IFN‐γ was identified as a crucial element for parasite control as its absence determined a drastic increase in parasitaemia, tissue parasitism, leukocyte infiltrates at the heart and striated muscles and mortality. The lack of IFN‐γ or IL‐12p40, a molecule shared by IL‐12 and IL‐23, also resulted in spinal cord lesions and a progressive paralysis syndrome. Whereas IgG2a was the main Ig isotype in infected C57BL/6 mice, IL‐12p40‐KO mice produced IgG2a and IgG1 and IFN‐γ‐KO mice produced only IgG1. The IFN‐γ‐protective effect was not essentially mediated by nitric oxide (NO), inasmuch as infected iNOS‐KO mice showed no parasitaemia and low tissue damage. Mice deficient in CD4+ or CD8+ T cells showed an intermediate phenotype with increased mortality and tissue pathology but no parasitaemia. Interestingly, CD28‐KO mice were unable to produce anti‐T. cruzi IgG antibodies but presented moderate tissue pathology and managed to control the infection. Thus, differently from infections with high virulence parasites, neither IgG, NO nor CD28‐mediated signalling are essential for the non‐sterile control of Sylvio X10/4 parasites.
The physiopathology of Chagas' disease has been largely defined in murine infections with virulent strains which partially represent parasite diversity. This report reviews our studies with Sylvio X10/4 parasites, a Trypanosoma cruzi clone that induces no acute phase but in C3H/He mice leads to chronic myocarditis resembling the human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.