Ice-core records of climate from Greenland and Antarctica show asynchronous temperature variations on millennial timescales during the last glacial period. The warming during the transition from glacial to interglacial conditions was markedly different between the hemispheres, a pattern attributed to the thermal bipolar see-saw. However, a record from the Ross Sea sector of East Antarctica has been suggested to be synchronous with Northern Hemisphere climate change. Here we present a temperature record from the Talos Dome ice core, also located in the Ross Sea sector. We compare our record with ice-core analyses from Greenland, based on methane synchronization, and find clearly asynchronous temperature changes during the deglaciation. We also find distinct differences in Antarctic records, pointing to differences in the climate evolution of the Indo-Pacific and Atlantic sectors of Antarctica. In the Atlantic sector, we find that the rate of warming slowed between 16,000 and 14,500 years ago, parallel with the deceleration of the rise in atmospheric carbon dioxide concentrations and with a slight cooling over Greenland. In addition, our chronology supports the hypothesis that the cooling of the Antarctic Cold Reversal is synchronous with the Bølling–Allerød warming in the northern hemisphere 14,700 years ago
[1] Predictions concerning Antarctica's contribution to sea level change have been hampered by poor knowledge of surface mass balance. Snow accumulation is the most direct climate indicator and has important implications for paleoclimatic reconstruction from ice cores. Snow accumulation measurements (stake, core, snow radar) taken along a 500-km transect crossing Talos in plateau areas and up to 260 kg m À2 yr À1 in slope areas and account for 20-75% of precipitation, whereas depositional features are negligible in surface mass balance.
Snow precipitation is the primary mass input to the Antarctic ice sheet and is one of the most direct climatic indicators, with important implications for paleoclimatic reconstruction from ice cores. Provenance of precipitation and the dynamic conditions that force these precipitation events at four deep ice core sites (Dome C, Law Dome, Talos Dome, and Taylor Dome) in East Antarctica were analysed with air mass back trajectories calculated using the Lagrangian model and the mean composite data for precipitation, geopotential height and wind speed field data from the European Centre for Medium Range Weather Forecast from 1980 to 2001. On an annual basis, back trajectories showed that the Atlantic-Indian and Ross-Pacific Oceans were the main provenances of precipitation in Wilkes Land (80%) and Victoria Land (40%), respectively, whereas the greatest influence of the ice sheet was on the interior near the Vostok site (80%) and in the Southwest Ross Sea (50%), an effect that decreased towards the coast and along the Antarctic slope. Victoria Land received snowfall atypically with respect to other Antarctica areas in terms of pathway (eastern instead of western), seasonality (summer instead of winter) and velocity (old air age). Geopotential height patterns at 500 hPa at low ([10 days) and high (2-6 days) frequencies during snowfall cycles at two core sites showed large positive anomalies at low frequencies developing in the Tasman Sea-Eastern Indian Ocean at higher latitudes (60-70°S) than normal. This could be considered part of an atmospheric blocking event, with transient eddies acting to decelerate westerlies in a split region area and accelerate the flow on the flanks of the low-frequency positive anomalies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.