The contribution of T cells in severe malaria pathogenesis has been described. Here, we provide evidence for the potential role of angiotensin II (Ang II) in modulating splenic T cell responses in a rodent model of cerebral malaria. T cell activation induced by infection, determined by 3 to 4-fold enhancement in CD69 expression, was reduced to control levels when mice were treated with 20 mg/kg losartan (IC50 = 0.966 mg/kg/d), an AT1 receptor antagonist, or captopril (IC50 = 1.940 mg/kg/d), an inhibitor of angiotensin-converting enzyme (ACE). Moreover, the production of interferon-γ and interleukin-17 by CD4+ T cells diminished 67% and 70%, respectively, by both treatments. Losartan reduced perforin expression in CD8+ T cells by 33% while captopril completely blocked it. The upregulation in chemokine receptor expression (CCR2 and CCR5) observed during infection was abolished and CD11a expression was partially reduced when mice were treated with drugs. T cells activated by Plasmodium berghei ANKA antigens showed 6-fold enhance in AT1 levels in comparison with naive cells. The upregulation of AT1 expression was reduced by losartan (80%) but not by captopril. Our results suggest that the AT1/Ang II axis has a role in the establishment of an efficient T cell response in the spleen and therefore could participate in a misbalanced parasite-induced T cell immune response during P. berghei ANKA infection.
Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1–7). Parasite infection decreased Ang-(1–7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1–7) decreased the level of infection in an A779 (specific antagonist of Ang-(1–7) receptor, MAS)-sensitive manner. 10−7 M PD123319, an AT2 receptor antagonist, partially reversed the effects of Ang-(1–7) and Ang II. However, 10−6 M losartan, an antagonist of the AT1 receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10−8 M Ang II or 10−8 M Ang-(1–7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10−7 M A779. 10−6 M dibutyryl-cAMP increased the level of infection and 10−7 M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1–7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1–7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.