Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1–7). Parasite infection decreased Ang-(1–7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1–7) decreased the level of infection in an A779 (specific antagonist of Ang-(1–7) receptor, MAS)-sensitive manner. 10−7 M PD123319, an AT2 receptor antagonist, partially reversed the effects of Ang-(1–7) and Ang II. However, 10−6 M losartan, an antagonist of the AT1 receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10−8 M Ang II or 10−8 M Ang-(1–7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10−7 M A779. 10−6 M dibutyryl-cAMP increased the level of infection and 10−7 M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1–7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1–7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus.
The increased resistance of the protozoan parasite Trypanosoma cruzi to nitro derivatives is one of the major problems for the successful treatment of Chagas' disease. In the present study, we have tested the effects of 1-O-hexadecylphosphocholine (miltefosine) against strains of T. cruzi that are partially resistant (strain Y) and highly resistant (strain Colombiana) to the drugs in clinical use. As expected, epimastigotes of strain Colombiana showed higher levels of resistance to benznidazole than those of strain Y. However, the level of resistance to miltefosine was the same for both strains. This alkylphospholipid was also extremely toxic against intracellular amastigotes of both strains. This ether-lipid analogue induced in a dose-dependent manner the production of tumor necrosis factor alpha and nitric oxide (NO) radicals by infected and noninfected macrophages, suggesting that miltefosine may activate macrophages in vitro. Nevertheless, the cytotoxic effect of miltefosine against intracellular amastigotes was independent of the amount of NO produced by the infected macrophages since the same dose-response curves for miltefosine were observed when the NO production was blocked by the NO synthase inhibitor N G -monomethyl-L-arginine monoacetate. Preliminary in vivo studies with BALB/c mice infected with strain Y indicated that oral miltefosine promoted survival and reduced the parasitemia to levels comparable to those observed when benznidazole was used. Four months after treatment, no parasites were detected in the blood or spleen tissue sections maintained in culture. Together, these results support the hypothesis that miltefosine may be used for the treatment of Chagas' disease, including cases caused by resistant strains of T. cruzi.
Tropical coastal lagoons are highly productive environments exhibiting high biodiversity. However, the use of these ecosystems by local communities is of concern, since this generally leads to environmental degradation. The Imboassica coastal lagoon, located in Macaé city, in Northern Rio de Janeiro, is an important ecosystem in the state, however, already displaying signs of anthropogenic impacts. Carnivorous fish Hoplias malabaricus specimens were sampled from this impacted site, as well as from a reference area. Fish from Imboassica Lagoon presented lower condition factor, lower cholinesterase activity, and higher percentage of erythrocyte micronuclei when compared to fish from the reference site. Metals in fish from Imboassica Lagoon were always higher than Encantada Lagoon, with some seasonal differences, where some metals were higher in the rainy season compared to the dry season in muscle tissue, with the exception of Cu, Fe, Sr, and Zn; and in the liver, except for Ba, Cd, Cr, Ni, and Sr. Cr and Mn in the edible muscle portion of the fish were higher than the limits established by Brazilian and International legislations as permissible for human consumption, thus leading to concerns regarding public health risks for the local population that use fish as their main protein source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.