Abstract. The use of remote sensing techniques is now common practice in different working environments, including engineering geology. Moreover, in recent years the development of structure from motion (SfM) methods, together with rapid technological improvement, has allowed the widespread use of cost-effective remotely piloted aircraft systems (RPAS) for acquiring detailed and accurate geometrical information even in evolving environments, such as mining contexts. Indeed, the acquisition of remotely sensed data from hazardous areas provides accurate 3-D models and high-resolution orthophotos minimizing the risk for operators. The quality and quantity of the data obtainable from RPAS surveys can then be used for inspection of mining areas, audit of mining design, rock mass characterizations, stability analysis investigations and monitoring activities. Despite the widespread use of RPAS, its potential and limitations still have to be fully understood.In this paper a case study is shown where a RPAS was used for the engineering geological investigation of a closed marble mine area in Italy; direct ground-based techniques could not be applied for safety reasons. In view of the re-activation of mining operations, high-resolution images taken from different positions and heights were acquired and processed using SfM techniques to obtain an accurate and detailed 3-D model of the area. The geometrical and radiometrical information was subsequently used for a deterministic rock mass characterization, which led to the identification of two large marble blocks that pose a potential significant hazard issue for the future workforce. A preliminary stability analysis, with a focus on investigating the contribution of potential rock bridges, was then performed in order to demonstrate the potential use of RPAS information in engineering geological contexts for geohazard identification, awareness and reduction.
Rockfall events represent significant hazards for areas characterized by high and steep slopes and therefore effective mitigation controls are essential to control their effect. There are a lot of examples all over the world of anthropic areas at risk because of their proximity to a rock slope. A rockfall runout analysis is a typical 3D problem, but for many years, because of the lack of specific software, powerful computers, and economic reasons, a 2D approach was normally adopted. However, in recent years the use of 3D software has become quite widespread and different runout working approaches have been developed. The contribution and potential use of photogrammetry in this context is undoubtedly great. This paper describes the application of a 3D hybrid working approach, which considers the integrated use of traditional geological methods, Terrestrial Laser Scanning, and drone based Digital Photogrammetry. Such approach was undertaken in order to perform the study of rockfall runout and geological hazard in a natural slope in Italy in correspondence of an archaeological area. Results show the rockfall hazard in the study area and highlights the importance of using photogrammetry for the correct and complete geometrical reconstruction of slope, joints, and block geometries, which is essential for the analysis and design of proper remediation measures.
11The three-dimensional laser scanning technique has recently become common in diverse working 12 environments. Even in geology, where further development is needed, this technique is increasingly useful 13 in tackling various problems such as stability investigations or geological and geotechnical monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.