This study highlights the importance of diabatic processes for the complex interaction of weather systems in the North Atlantic-European sector during the week of 7-14 September 2008. A chain of events occurred including the extratropical transition (ET) of hurricane Hanna, a subsequently developing extratropical cyclone, the formation of an upper-level potential vorticity (PV) streamer that protruded towards Europe and triggered intense rainfall, and the genesis of a Mediterranean cyclone. A PV perspective is adopted along with trajectory calculations to elucidate the diabatic modification of the midlatitude flow.Important diabatic PV modifications occurred at upper levels, associated with the cross-isentropic transport of low-PV air within warm conveyor belts (WCBs). These were diagnosed during the ET of Hanna and the development of the extratropical cyclone near Newfoundland. The WCBs contributed to the amplification of ridges downstream of each cyclone and to the subsequent elongation of Hanna's upstream trough into a PV streamer. This streamer eventually triggered the Mediterranean cyclogenesis. The second major effect of the diabatic processes occurred on smaller scales, in the low and middle troposphere. The remnants of Hanna's tropical PV core advected moist air towards the baroclinic zone leading to condensational PV production in the lower troposphere. In contrast, in the case of the extratropical cyclone, diabatic PV production occurred within its WCB at mid levels. These diagnostic analyses corroborate the potential of diabatic processes associated with extratropical flow systems for the modification of both the low-level vortices and the upper-level Rossby wave guide.
Abstract. The prediction of climate on time scales of years to decades is attracting the interest of both climate researchers and stakeholders. The German Ministry for Education and Research (BMBF) has launched a major research programme on decadal climate prediction called MiKlip (Mittelfristige Klimaprognosen, Decadal Climate Prediction) in order to investigate the prediction potential of global and regional climate models (RCMs). In this paper we describe a regional predictive hindcast ensemble, its validation, and the added value of regional downscaling. Global predictions are obtained from an ensemble of simulations by the MPI-ESM-LR model (baseline 0 runs), which were downscaled for Europe using the COSMO-CLM regional model. Decadal hindcasts were produced for the 5 decades starting in 1961 until 2001. Observations were taken from the E-OBS data set. To identify decadal variability and predictability, we removed the long-term mean, as well as the long-term linear trend from the data. We split the resulting anomaly time series into two parts, the first including lead times of 1-5 years, reflecting the skill which originates mainly from the initialisation, and the second including lead times from 6-10 years, which are more related to the representation of low frequency climate variability and the effects of external forcing. We investigated temperature averages and precipitation sums for the summer and winter half-year. Skill assessment was based on correlation coefficient and reliability. We found that regional downscaling preserves, but mostly does not improve the skill and the reliability of the global predictions for summer half-year temperature anomalies. In contrast, regionalisation improves global decadal predictions of half-year precipitation sums in most parts of Europe. The added value results from an increased predictive skill on grid-point basis together with an improvement of the ensemble spread, i.e. the reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.