The dynamics of vibrational wave packets excited in K2 dimers attached to superfluid helium nanodroplets is investigated by means of femtosecond pump–probe spectroscopy. The employed resonant three-photon-ionization scheme is studied in a wide wavelength range and different pathways leading to K2+ formation are identified. While the wave packet dynamics of the electronic ground state is not influenced by the helium environment, perturbations of the electronically excited states are observed. The latter reveal a strong time dependence on the timescale 3–8 ps which directly reflects the dynamics of desorption of K2 off the helium droplets.
Free sodium ammonia clusters Na (NH3) n up to n = 45 were generated in a pickup source by injecting a beam of neutral sodium atoms into the expansion zone of a piezo driven pulsed nozzle. The clusters thus formed are studied by one-photon ionisation in the region of 266 nm to 520 nm, time-of-flight mass spectrometry as well as photoelectron spectrometry. Ionisation thresholds for clusters up to n = 18 and dissociation energies for the neutral Na(NH3) n up to n = 6 are reported.
Helium nanodroplet isolation has been applied to agglomerate alkali clusters at temperatures of 380 mK. The very weak binding to the surface of the droplets allows a selection of only weakly bound, high-spin states. Here we show that larger clusters of alkali atoms in high-spin states can be formed. The lack of strong bonds from pairing electrons makes these systems nonmetallic, van der Waals-like complexes of metal atoms. We find that sodium and potassium readily form such clusters containing up to 25 atoms. In contrast, this process is suppressed for rubidium and cesium. Apparently, for these heavy alkalis, larger high-spin aggregates are not stable and depolarize spontaneously upon cluster formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.