Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance.
Summary1. Callitris intratropica is a long-lived, obligate-seeding, fire-sensitive overstorey conifer that typically occurs in small groves (<0.1 ha) of much higher tree densities than the surrounding, eucalypt-dominated tropical savanna in northern Australia. We used C. intratropica groves of varying canopy cover to examine the role of feedbacks between fire and tree cover in the persistence of a fire-sensitive tree species and the maintenance of habitat heterogeneity in a highly flammable savanna. 2. We examined the population structure and floristic composition of C. intratropica groves and conducted controlled burns with Aboriginal landowners to test the prediction that groves of C. intratropica with closed canopies inhibit savanna fires by physically altering the fuel arrays below trees. We measured pre-and post-burn fuel availability, the probability of burning and fire intensity along transects (55-75 m) spanning entire C. intratropica groves and extending into the surrounding savanna matrix. 3. We found that closed-canopy groves of C. intratropica had higher densities of seedlings and saplings than open-canopy groves and supported a distinct plant community. Closed-canopy groves also had a lower probability of burning and less severe fires due to a lower availability of fine fuels than the surrounding savanna. 4. Synthesis. Our results suggest that the observed regeneration within closed-canopy C. intratropica groves within frequently burnt savanna reflects a vegetation-fire feedback. A significant, negative relationship between canopy cover and the probability of burning provides strong evidence that closed-canopy C. intratropica groves are capable of excluding low-intensity savanna fires, thereby enabling the persistence of patches of fire-sensitive forest or woodland amid open, highly flammable savanna vegetation. We present our findings as evidence that alternative stable state dynamics may play a role in determining savanna diversity and structure.
We use the fire ecology and biogeographical patterns of Callitris intratropica, a fire-sensitive conifer, and the Asian water buffalo (Bubalus bubalis), an introduced mega-herbivore, to examine the hypothesis that the continuation of Aboriginal burning and cultural integration of buffalo contribute to greater savanna heterogeneity and diversity in central Arnhem Land (CAL) than Kakadu National Park (KNP). The ‘Stone Country’ of the Arnhem Plateau, extending from KNP to CAL, is a globally renowned social–ecological system, managed for millennia by Bininj-Kunwok Aboriginal clans. Regional species declines have been attributed to the cessation of patchy burning by Aborigines. Whereas the KNP Stone Country is a modern wilderness, managed through prescribed burning and buffalo eradication, CAL remains a stronghold for Aboriginal management where buffalo have been culturally integrated. We surveyed the plant community and the presence of buffalo tracks among intact and fire-damaged C. intratropica groves and the savanna matrix in KNP and CAL. Aerial surveys of C. intratropica grove condition were used to examine the composition of savanna vegetation across the Stone Country. The plant community in intact C. intratropica groves had higher stem counts of shrubs and small trees and higher proportions of fire-sensitive plant species than degraded groves and the savanna matrix. A higher proportion of intact C. intratropica groves in CAL therefore indicated greater gamma diversity and habitat heterogeneity than the KNP Stone Country. Interactions among buffalo, fire, and C. intratropica suggested that buffalo also contributed to these patterns. Our results suggest linkages between ecological and cultural integrity at broad spatial scales across a complex landscape. Buffalo may provide a tool for mitigating destructive fires; however, their interactions require further study. Sustainability in the Stone Country depends upon adaptive management that rehabilitates the coupling of indigenous culture, disturbance, and natural resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.