Despite the fact that buildings are designed for occupants in principle, evidence suggests buildings are often uncomfortable compared to the requirements of standards; difficult to control by occupants; and, operated inefficiently with regards to occupants' preferences and presence. Meanwhile, practitioners-architects, engineers, technology companies, building managers and operators, and policymakers-lack the knowledge, tools, and precedent to design and operate buildings optimally considering the complex and diverse nature of occupants. Building on the success of IEA EBC Annex 66 ("Definition and simulation of occupant behavior in buildings"; 2013-2017), a follow-up IEA EBC Annex 79 ("Occupantcentric building design and operation"; 2018-2023) has been developed to address gaps in knowledge, practice, and technology. Annex 79 involves international researchers from diverse disciplines like engineering, architecture, computer science, psychology, and sociology. Annex 79 and this review paper have four main areas of focus: (1) multi-domain environmental exposure, building interfaces, and human behavior; (2) data-driven occupant modeling strategies and digital tools; (3) occupant-centric building design; and (4) occupant-centric building operation. The objective of this paper is to succinctly report on the leading research of the above topics and articulate the most pressing research needs-planned to be addressed by Annex 79 and beyond.
Evaluating and optimising human comfort within the built environment is challenging due to the large number of physiological, psychological and environmental variables that affect occupant comfort preference. Human perception could be helpful to capture these disparate phenomena and interpreting their impact; the challenge is collecting spatially and temporally diverse subjective feedback in a scalable way. This paper presents a methodology to collect intensive longitudinal subjective feedback of comfort-based preference using micro ecological momentary assessments on a smartwatch platform. An experiment with 30 occupants over two weeks produced 4378 field-based surveys for thermal, noise, and acoustic preference. The occupants and the spaces in which they left feedback were then clustered according to these preference tendencies. These groups were used to create different feature sets with combinations of environmental and physiological variables, for use in a multi-class classification task. These classification models were trained on a feature set that was developed from time-series attributes, environmental and near-body sensors, heart rate, and the historical preferences of both the individual and the comfort group assigned. The most accurate model had multi-class classification F1 micro scores of 64%, 80% and 86% for thermal, light, and noise preference, respectively. The discussion outlines how these models can enhance comfort preference prediction when supplementing data from installed sensors. The approach presented prompts reflection on how the building analysis community evaluates, controls, and designs indoor environments through balancing the measurement of variables with occupant preferences in an intensive longitudinal way.
This paper describes an open data set of 3,053 energy meters from 1,636 non-residential buildings with a range of two full years (2016 and 2017) at an hourly frequency (17,544 measurements per meter resulting in approximately 53.6 million measurements). These meters were collected from 19 sites across North America and Europe, with one or more meters per building measuring whole building electrical, heating and cooling water, steam, and solar energy as well as water and irrigation meters. Part of these data was used in the Great Energy Predictor III (GEPIII) competition hosted by the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) in October-December 2019. GEPIII was a machine learning competition for long-term prediction with an application to measurement and verification. This paper describes the process of data collection, cleaning, and convergence of time-series meter data, the meta-data about the buildings, and complementary weather data. This data set can be used for further prediction benchmarking and prototyping as well as anomaly detection, energy analysis, and building type classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.