We study the structure of the ρ-meson within a light-front model with constituent quark degrees of freedom. We calculate electroweak static observables: magnetic and quadrupole moments, decay constant and charge radius. The prescription used to compute the electroweak quantities is free of zero modes, which makes the calculation implicitly covariant. We compare the results of our model with other ones found in the literature. Our model parameters give a decay constant close to the experimental one.
Abstract. For the vector sector, i.e, mesons with spin-1, the electromagnetic form factors and anothers observables are calculated with the light-front approach. However, the lightfront quantum field theory have some problems, for example, the rotational symmetry breaking. We solve that problem added the zero modes contribuition to the matrix elements of the electromagnetic current, besides the valence contribuition. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the 0 → 0 one carries zero mode contributions.
Abstract.In this work, we analyze the electromagnetic structure of the pion. We calculate its electromagnetic radius and electromagnetic form factor in low and intermediate momentum range. Such observables are determined by means of a theoretical model that takes into account the constituent quark and antiquark of the pion within the formalism of light-front field theory. In particular, we consider a nonsymmetrical vertex in this model, with which we calculate the electromagnetic form factor of the pion in an optimized way, so that we obtain a value closer to the experimental charge radius of the pion. The theoretical calculations are also compared with the most recent experimental data involving the pion electromagnetic form factor and the results show very good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.