Obtaining atomic level information about the structure and dynamics of biomolecules is critical to understand their function. Nuclear magnetic resonance (NMR) spectroscopy provides unique insights into the dynamic nature of biomolecules and their interactions, capturing transient conformers and their features. However, relaxation-induced line broadening and signal overlap make it challenging to apply NMR to large biological systems. Here, we take advantage of the high sensitivity and the broad chemical-shift range of 19 F nuclei, and leverage the remarkable relaxation properties of the aromatic 19 F- 13 C spin pair to disperse 19 F resonances in a 2-dimensional transverse relaxation optimized TROSY spectrum. We demonstrate the application of the 19 F- 13 C TROSY to investigate proteins and nucleic acids. This experiment expands the scope of 19 F NMR in the study of structure, dynamics and function of large and complex biological systems and provides a powerful background-free NMR probe.
As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30-200 lg in 8-35 ll volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure.
Mandelalides A-D are variously glycosylated, unusual polyketide macrolides isolated from a new species of Lissoclinum ascidian collected from South Africa, Algoa Bay near Port Elizabeth and the surrounding Nelson Mandela Metropole. Their planar structures were elucidated on sub-milligram samples by comprehensive analysis of 1D and 2D NMR data, supported by mass spectrometry. The assignment of relative configuration was accomplished by consideration of homonuclear and heteronuclear coupling constants in tandem with ROESY data. The absolute configuration was assigned for mandelalide A after chiral GC-MS analysis of the hydrolyzed monosaccharide (2-O-methyl-α-L-rhamnose) and consideration of ROESY correlations between the monosaccharide and aglycone in the intact natural product. The resultant absolute configuration of the mandelalide A macrolide was extrapolated to propose the absolute configurations of mandelalides B-D. Remarkably, mandelalide B contained the C-4′ epimeric 2-O-methyl-6-dehydro-α-L-talose. Mandelalides A and B showed potent cytotoxicity to human NCI-H460 lung cancer cells (IC50, 12 and 44 nM, respectively) and mouse Neuro-2A neuroblastoma cells (IC50, 29 and 84 nM, respectively).
To better understand the structural basis of the biological activity of the neuropeptide substance P SP; (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2), two-dimensional nmr spectroscopy experiments and simulated annealing calculations were used to investigate the conformation adopted in the presence of the membrane model system sodium dodecyl sulfate. It was determined that SP in the presence of SDS micelles undergoes a conformational equilibrium between an alpha- and a 3(10)-helix involving the midregion (Pro4-Gln5-Gln6-Phe7-Phe8) of the peptide. The C-terminus adopts an extended conformation while the N-terminus remains quite flexible. The conformation adopted by SP in the presence of SDS micelles yields a structure that is consistent with the model of a neurokinin-1 selective ligand proposed by Convert.
Etoposide is one of the most successful chemotherapeutic agents used for the treatment of human cancers. The drug kills cells by inhibiting the ability of topoisomerase II to ligate nucleic acids that it cleaves during the double-stranded DNA passage reaction. Etoposide is composed of a polycyclic ring system (rings A-D), a glycosidic moiety at the C4 position, and a pendant ring (E-ring) at the C1 position. Although drug-enzyme contacts, as opposed to drug-DNA interactions, mediate the entry of etoposide into the topoisomerase II-drug-DNA complex, the substituents on etoposide that interact with the enzyme have not been identified. Therefore, saturation transfer difference [ 1 H]-nuclear magnetic resonance spectroscopy and protein-drug competition binding assays were employed to define the groups on etoposide that associate with yeast topoisomerase II and human topoisomerase IIα. Results indicate that the geminal protons of the A-ring, the H5 and H8 protons of the B-ring, as well as the H2' and H6' protons and the 3'-and 5'-methoxyl protons of the pendent E-ring interact with both enzymes in the binary protein-ligand complexes. In contrast, no significant nuclear Overhauser enhancement signals arising from the C-ring, the D-ring, or the C4 glycosidic moiety were observed with either enzyme, suggesting that there is limited or no contact between these portions of etoposide and topoisomerase II in the binary complex. The functional importance of E-ring substituents was confirmed by topoisomerase II-mediated DNA cleavage assays.Etoposide is one of the most successful chemotherapeutic agents used for the treatment of human cancers (1-4). The drug currently is in its third decade of clinical use and is front line
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.