Convergent findings from our behavioral screen for memory mutants and DNA microarray analysis of transcriptional responses during memory formation in normal animals suggest the involvement of the pumilio/staufen pathway in memory. Behavioral experiments confirm a role for this pathway and suggest a molecular mechanism for synapse-specific modification.
Glutamate is the major excitatory neurotransmitter in the mammalian CNS. It is loaded into synaptic vesicles by a proton gradient-dependent uptake system and is released by exocytosis upon stimulation. Recently, two mammalian isoforms of a vesicular glutamate transporter, VGLUT1 and VGLUT2, have been identified, the expression of which enables quantal release of glutamate from glutamatergic neurons. Here, we report a novel isoform of a human vesicular glutamate transporter (hVGLUT3). The predicted amino acid sequence of hVGLUT3 shows 72% identity to both hVGLUT1 and hVGLUT2. hVGLUT3 functions as a vesicular glutamate transporter with similar properties to the other isoforms when it is heterologously expressed in a neuroendocrine cell line. Although mammalian VGLUT1 and VGLUT2 exhibit a complementary expression pattern covering all glutamatergic pathways in the CNS, expression of hVGLUT3 overlaps with them in some brain areas, suggesting molecular diversity that may account for physiological heterogeneity in glutamatergic synapses.
The long-tailed macaque, also referred to as cynomolgus monkey (Macaca fascicularis), is one of the most important nonhuman primate animal models in basic and applied biomedical research. To improve the predictive power of primate experiments for humans, we determined the genome sequence of a Macaca fascicularis female of Mauritian origin using a whole-genome shotgun sequencing approach. We applied a template switch strategy that uses either the rhesus or the human genome to assemble sequence reads. The sixfold sequence coverage of the draft genome sequence enabled discovery of about 2.1 million potential single-nucleotide polymorphisms based on occurrence of a dimorphic nucleotide at a given position in the genome sequence. Homology-based annotation allowed us to identify 17,387 orthologs of human protein-coding genes in the M. fascicularis draft genome, and the predicted transcripts enabled the design of a M. fascicularisspecific gene expression microarray. Using liver samples from 36 individuals of different geographic origin we identified 718 genes with highly variable expression in liver, whereas the majority of the transcriptome shows relatively stable and comparable expression. Knowledge of the M. fascicularis draft genome is an important contribution to both the use of this animal in disease models and the safety assessment of drugs and their metabolites. In particular, this information allows high-resolution genotyping and microarray-based gene-expression profiling for animal stratification, thereby allowing the use of well-characterized animals for safety testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.