We present high-power single-cycle carrier-envelope phase locked THz pulses at a central frequency of 2.1 THz with MV/cm electric field strengths and magnetic field strengths beyond 0.3 T. The THz radiation is generated by optical rectification in an organic salt crystal 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate called DAST pumped with the signal wavelength of a powerful optical parametric amplifier. Conversion efficiencies of more than 2% are reported.
We present the generation of high-power single-cycle terahertz (THz) pulses in the organic salt crystal 2-[3-(4-hydroxystyryl)-5.5-dimethylcyclohex-2-enylidene]malononitrile or OH1. Broadband THz radiation with a central frequency of 1.5 THz (λ(c)=200 μm) and high electric field strength of 440 kV/cm is produced by optical rectification driven by the signal of a powerful femtosecond optical parametric amplifier. A 1.5% pump to THz energy conversion efficiency is reported, and pulse energy stability better than 1% RMS is achieved. An approach toward the realization of higher field strength is discussed.
High-field terahertz (THz) single-cycle pulses with 1.5 MV/cm are generated by optical rectification in the stilbazolium salt crystal 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate. We show experimentally that the generated THz transient carrying 5 octaves (0.15 to 5.5 THz) undergoes a complex time-frequency evolution when tightly focused, and we present a model based on three independent oscillating dipoles capable to describe this anomalous field evolution. Finally, we present a method to control the absolute phase of such supercontinuum THz pulses as an essential tool for future field-sensitive investigations.
We derive an expression describing pre-compensation of pulse-distortion due to saturation effects in short pulse laser-amplifiers. The analytical solution determines the optimum input pulse-shape required to obtain any arbitrary target pulse-shape at the output of the saturated laser-amplifier. The relation is experimentally verified using an all-fiber amplifier chain that is seeded by a directly modulated laser-diode. The method will prove useful in applications of high power, high energy laser-amplifier systems that need particular pulse-shapes to be efficient, e.g. micromachining and scientific laser-matter-interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.