SUMMARYWe develop finite element data structures for T-splines based on Bézier extraction generalizing our previous work for NURBS. As in traditional finite element analysis, the extracted Bézier elements are defined in terms of a fixed set of polynomial basis functions, the so-called Bernstein basis. The Bézier elements may be processed in the same way as in a standard finite element computer program, utilizing exactly the same data processing arrays. In fact, only the shape function subroutine needs to be modified while all other aspects of a finite element program remain the same. A byproduct of the extraction process is the element extraction operator. This operator localizes the topological and global smoothness information to the element level, and represents a canonical treatment of T-junctions, referred to as 'hanging nodes' in finite element analysis and a fundamental feature of T-splines. A detailed example is presented to illustrate the ideas.
SUMMARYIn this paper a phase-field model for cohesive fracture is developed. After casting the cohesive zone approach in an energetic framework, which is suitable for incorporation in phase-field approaches, the phase-field approach to brittle fracture is recapitulated. The approximation to the Dirac function is discussed with particular emphasis on the Dirichlet boundary conditions that arise in the phase-field approximation. The accuracy of the discretisation of the phase field, including the sensitivity to the parameter that balances the field and the boundary contributions, is assessed at the hand of a simple example. The relation to gradientenhanced damage models is highlighted and some comments on the similarities and the differences between phase-field approaches to fracture and gradient-damage models are made. A phase-field representation for cohesive fracture is elaborated, starting from the above energetic framework. The strong as well as the weak formats are presented, the latter being the starting point for the ensuing finite element discretisation, which involves three fields: the displacement field, an auxiliary field which represents the jump in the displacement across the crack, and the phase field. Compared to phase-field approaches for brittle fracture, the modelling of the jump of the displacement across the crack is a complication, and the current work provides evidence that an additional constraint has to be provided in the sense that the auxiliary field must be constant in the direction orthogonal to the crack. The sensitivity of the results with respect to the numerical parameter needed to enforce this constraint is investigated, as well as how the results depend on the orders of the discretisation of the three fields. Finally, examples are given which demonstrate grid insensitivity for adhesive and for cohesive failure, the latter example being somewhat limited since only straight crack propagation is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.