As climate change continues to exert increasing pressure upon the livelihoods and agricultural sector of many developing and developed nations, a need exists to understand and prioritise at the sub national scale which areas and communities are most vulnerable. The purpose of this study is to develop a robust, rigorous and replicable methodology that is flexible to data limitations and spatially prioritizes the vulnerability of agriculture and rural livelihoods to climate change. We have applied the methodology in Vietnam, Uganda and Nicaragua, three contrasting developing countries that are particularly threatened by climate change. We conceptualize vulnerability to climate change following the widely adopted combination of sensitivity, exposure and adaptive capacity. We used Ecocrop and Maxent ecological models under a high emission climate scenario to assess the sensitivity of the main food security and cash crops to climate change. Using a participatory approach, we identified exposure to natural hazards and the main indicators of adaptive capacity, which were modelled and analysed using geographic information systems. We finally combined the components of vulnerability using equal-weighting to produce a crop specific vulnerability index and a final accumulative score. We have mapped the hotspots of climate change vulnerability and identified the underlying driving indicators. For example, in Vietnam we found the Mekong delta to be one of the vulnerable regions due to a decline in the climatic suitability of rice and maize, combined with high exposure to flooding, sea level rise and drought. However, the region is marked by a relatively high adaptive capacity due to developed infrastructure and comparatively high levels of education. The approach and information derived from the study informs public climate change policies and actions, as vulnerability assessments are the bases of any National Adaptation Plans (NAP), National Determined Contributions (NDC) and for accessing climate finance.
Monitoring forest–agriculture mosaics is crucial for understanding landscape heterogeneity and managing biodiversity. Mapping these mosaics from remotely sensed imagery remains challenging, since ecological gradients from forested to agricultural areas make characterizing vegetation more difficult. The recent synthetic aperture radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) time series provide a great opportunity to monitor forest–agriculture mosaics due to their high spatial and temporal resolutions. However, while a few studies have used the temporal resolution of S-2 time series alone to map land cover and land use in cropland and/or forested areas, S-1 time series have not yet been investigated alone for this purpose. The combined use of S-1 & S-2 time series has been assessed for only one or a few land cover classes. In this study, we assessed the potential of S-1 data alone, S-2 data alone, and their combined use for mapping forest–agriculture mosaics over two study areas: a temperate mountainous landscape in the Cantabrian Range (Spain) and a tropical forested landscape in Paragominas (Brazil). Satellite images were classified using an incremental procedure based on an importance rank of the input features. The classifications obtained with S-2 data alone (mean kappa index = 0.59–0.83) were more accurate than those obtained with S-1 data alone (mean kappa index = 0.28–0.72). Accuracy increased when combining S-1 and 2 data (mean kappa index = 0.55–0.85). The method enables defining the number and type of features that discriminate land cover classes in an optimal manner according to the type of landscape considered. The best configuration for the Spanish and Brazilian study areas included 5 and 10 features, respectively, for S-2 data alone and 10 and 20 features, respectively, for S-1 data alone. Short-wave infrared and VV and VH polarizations were key features of S-2 and S-1 data, respectively. In addition, the method enables defining key periods that discriminate land cover classes according to the type of images used. For example, in the Cantabrian Range, winter and summer were key for S-2 time series, while spring and winter were key for S-1 time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.