This paper presents a new approach for the modelling of heat transfer in 3D discrete particle systems. Using a combined finite-discrete element (FDEM) method, the surface of contact is numerically computed when two discrete meshes of two solids experience a small overlap. Incoming heat flux and heat conduction inside and between solid bodies are linked. In traditional FEM (finite element method) or DEM (discrete element method) approaches, to model heat transfer across contacting bodies, the surface of contact is not directly reconstructed. The approach adopted here uses the number of surface elements from the penetrating boundary meshes to form a polygon of the intersection, resulting in a significant decrease in the mesh dependency of the method. Moreover, this new method is suitable for any sizes or shapes making up the particle system, and heat distribution across particles is an inherent feature of the model. This FDEM approach is validated against two models: a FEM model and a DEM pipe network model. In addition, a multi-particle heat transfer contact problem of complex-shaped particles is presented.
This paper presents a new three-dimensional thermo-mechanical (TM) coupling approach for thermal fracturing of rocks in the finite-discrete element method (FDEM). The linear thermal expansion formula is implemented in the context of FDEM according to the concept of the multiplicative split of the deformation gradient. The presented TM formulation is derived in the geo-mechanical solver, enabling thermal expansion and thermally induced fracturing. This TM approach is validated against analytical solutions of the Cauchy stress, thermal expansion and stress distribution. Additionally, the thermal load on the previously validated configurations is increased and the resulting fracture initiation and propagation are observed. Finally, simulation results of the cracking of a reinforced concrete structure under thermal stress are compared to experimental results. Results are in excellent agreement.Keywords Thermo-mechanical (TM) · Finite element method (FEM) · Discrete element method (DEM) · Finite-discrete element method (FDEM) · Thermal cracking · Explicit method · Fracture model
In many granular material simulation applications, DEM capability is focused on the dynamic solid particulate flow properties and on systems in which millions of particles are involved. The time of relevance is many seconds or even minutes of real time. Simplifying assumptions are made to achieve run completion in practical timescales. There are certain applications, typically involving manufactured particles, where a representative pack is of the order of a thousand particles. More accurate capturing of the influence of complex shape is then often possible. Higher accuracies are necessary to model the topology of the void space, for example, for further CFD simulation and optimisation of fluid flow properties. Alternatively, the accuracy may be critical for structural performance and the force or stress transmission through the contact points is to be controlled to avoid material damage and poor function. This paper briefly summarises methods for simulation of shape effects on packing structures in the granular community and narrows the scope to problems where shape effects are of overriding concern. Two applications of mono-sized, mono-shaped packing problems are highlighted: catalyst support pellets in gas reforming and concrete armour units in breakwater structures. The clear advantages of FDEM for complex-shaped particle interactions in packed systems with relatively few particles are discussed. A class of particulate problems, 'FDEM-suited' problems, ones that are ideal to be solved by FDEM rather than by DEM, is proposed for science and engineering use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.