Introduction Ejaculation is a reflex controlled by a spinal ejaculation generator located in the lumbosacral spinal cord responsible for the coordination of genital sensory with autonomic and motor outputs that regulate ejaculation. In the male rat, a population of lumbar spinothalamic cells (LSt cells) comprises an essential component of the spinal ejaculation generator. LSt cells are activated with ejaculation, but the nature of the signal transduction pathways involved in this activation is unknown. Moreover, it is unknown if LSt cell activation is required for expression of ejaculation. Aim The current study tested the hypothesis that ejaculatory reflexes are triggered via activation of the mitogen-activated protein (MAP) kinase signaling pathway in the LSt cells. Methods Expression of phosphorylated extracellular signal-related kinases 1 and 2 (pERK) was investigated following mating behavior, or following ejaculation induced by electrical stimulation of the dorsal penile nerve (DPN) in anesthetized, spinalized male rats. Next, the effects of intrathecal or intraspinal delivery of Mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor U0126 on DPN stimulation-induced ejaculation was examined. Main Outcome Measures Expression of pERK in LSt cells and associated areas was analyzed. Electromyographic recordings of the bulbocavernosus muscle were recorded in anesthetized, spinalized rats. Results Results indicate that the MAP kinase signaling pathway is activated in LSt cells following ejaculation in mating animals or induced by DPN stimulation in anesthetized, spinalized animals. Moreover, ERK activation in LSt cells is an essential trigger for ejaculation, as DPN stimulation-induced reflexes were absent following administration of MEK inhibitor in the L3-L4 spinal area. Conclusion These data provide insight into the nature of the signal transduction pathways involved in the activation of ejaculation through LSt cells. The data demonstrate that ERK activation in LSt cells is essential for ejaculation and contribute to a more detailed understanding of the spinal generation of ejaculation.
lar effects of hypocretin-1 in nucleus of the solitary tract. Am J Physiol Heart Circ Physiol 284: H1369-H1377, 2003. First published December 12, 2002 10.1152/ajpheart.00877.2002Experiments were done in male Wistar rats to investigate the effects of microinjection of hypocretin-1 (Hcrt-1) into the nucleus of the solitary tract (NTS) on mean arterial pressure (MAP), heart rate (HR), and the baroreflex. In the first series, the distribution of Hcrt-1-like immunoreactivity (Ir) was mapped within the region of NTS. Hcrt-1 Ir was found throughout the NTS region, predominantly within the caudal dorsolateral (Slt), medial (Sm), and interstitial subnuclei of the NTS. In the second series, in ␣-chloralose or urethaneanesthetized rats, microinjection of Hcrt-1 (0.5-5 pmol) into the caudal NTS elicited a dose-dependent decrease in MAP and HR. A mapping of the caudal NTS region showed that the largest depressor and bradycardia responses elicited by Hcrt-1 were from sites in the Slt and Sm. In addition, doses Ͼ2.5 pmol at a small number of sites localized to the caudal commissural nucleus of NTS elicited pressor and tachycardia responses. Intravenous administration of the muscarinic receptor blocker atropine methyl bromide abolished the bradycardia response and attenuated the depressor response, whereas subsequent administration of the nicotinic receptor blocker hexamethonium bromide abolished the remaining MAP response. Finally, microinjection of Hcrt-1 into the NTS significantly potentiated the reflex bradycardia to activation of arterial baroreceptors as a result of increasing MAP by systemic injections of phenylephrine (2-4 g/kg). These results suggest that Hcrt-1 in the NTS activates neuronal circuits that increases vagal activity to the heart, inhibits sympathetic activity to the heart and vasculature, and alters the excitability of NTS neuronal circuits that reflexly control the circulation.orexin-A; blood pressure; baroreceptor reflex; brain stem; ingestive behavior HYPOCRETIN (Hcrt) neuropeptides have been recently shown to be almost exclusively expressed within neurons of the lateral and perifornical hypothalamic areas (30,33,35,47,49). These peptides, Hcrt-1, a 33 amino-acid peptide with an NH 2 -terminal pyrogutalmyl residue, and Hcrt-2, a 28 amino acid peptide with a COOH-terminal amide (35), are de-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.