The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim (COVID-19 Agent-based Simulator), an open-source model developed to help address these questions. Covasim includes country-specific demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, long-term care facilities, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility. Covasim also supports an extensive set of interventions, including non-pharmaceutical interventions, such as physical distancing and protective equipment; pharmaceutical interventions, including vaccination; and testing interventions, such as symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and other factors. Implemented in pure Python, Covasim has been designed with equal emphasis on performance, ease of use, and flexibility: realistic and highly customized scenarios can be run on a standard laptop in under a minute. In collaboration with local health agencies and policymakers, Covasim has already been applied to examine epidemic dynamics and inform policy decisions in more than a dozen countries in Africa, Asia-Pacific, Europe, and North America.
Background In order to slow down the spread of SARS-CoV-2, the virus causing the COVID-19 pandemic, the UK government has imposed strict physical distancing (lockdown) measures including school 'dismissals' since 23 March 2020. As evidence is emerging that these measures may have slowed the spread of the pandemic, it is important to assess the impact of any changes in strategy, including scenarios for school reopening and broader relaxation of social distancing. This work uses an individual-based model to predict the impact of a suite of possible strategies to reopen schools in the UK, including that currently proposed by the UK government. Methods We use Covasim, a stochastic agent-based model for transmission of COVID-19, calibrated to the UK epidemic. The model describes individuals' contact networks stratified as household, school, work and community layers, and uses demographic and epidemiological data from the UK. We simulate a range of different school reopening strategies with a society-wide relaxation of lockdown measures and in the presence of different non-pharmaceutical interventions, to estimate the number of new infections, cumulative cases and deaths, as well as the effective reproduction number with different strategies. To account for uncertainties within the stochastic simulation, we also simulated different levels of infectiousness of children and young adults under 20 years old compared to older ages. Findings We found that with increased levels of testing of people (between 25% and 72% of symptomatic people tested at some point during an active COVID-19 infection depending on scenarios) and effective contact-tracing and isolation for infected individuals, an epidemic rebound may be prevented across all reopening scenarios, with the effective reproduction number (R) remaining below one and the cumulative number of new infections and deaths significantly lower than they would be if testing did not increase. If UK schools reopen in phases from June 2020, prevention of a second wave would require testing 51% of symptomatic infections, tracing of 40% of their contacts, and isolation of symptomatic and diagnosed cases. However, without such measures, reopening of schools together with gradual relaxing of the lockdown measures are likely to induce a secondary pandemic wave, as are other scenarios for reopening. When infectiousness of <20 year olds was varied from 100% to 50% of that of older ages, our findings remained unchanged. Interpretation To prevent a secondary COVID-19 wave, relaxation of social distancing including reopening schools in the UK must be implemented alongside an active large-scale population-wide testing of symptomatic individuals and effective tracing of their contacts, followed by isolation of symptomatic and diagnosed individuals. Such combined measures have a greater likelihood of controlling the transmission of SARS-CoV-2 and preventing a large number of COVID-19 deaths than reopening schools and society with the current level of implementation of testing and isolation of infected individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.