Summary Background As lockdown measures to slow the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection begin to ease in the UK, it is important to assess the impact of any changes in policy, including school reopening and broader relaxation of physical distancing measures. We aimed to use an individual-based model to predict the impact of two possible strategies for reopening schools to all students in the UK from September, 2020, in combination with different assumptions about relaxation of physical distancing measures and the scale-up of testing. Methods In this modelling study, we used Covasim, a stochastic individual-based model for transmission of SARS-CoV-2, calibrated to the UK epidemic. The model describes individuals' contact networks stratified into household, school, workplace, and community layers, and uses demographic and epidemiological data from the UK. We simulated six different scenarios, representing the combination of two school reopening strategies (full time and a part-time rota system with 50% of students attending school on alternate weeks) and three testing scenarios (68% contact tracing with no scale-up in testing, 68% contact tracing with sufficient testing to avoid a second COVID-19 wave, and 40% contact tracing with sufficient testing to avoid a second COVID-19 wave). We estimated the number of new infections, cases, and deaths, as well as the effective reproduction number (R) under different strategies. In a sensitivity analysis to account for uncertainties within the stochastic simulation, we also simulated infectiousness of children and young adults aged younger than 20 years at 50% relative to older ages (20 years and older). Findings With increased levels of testing (between 59% and 87% of symptomatic people tested at some point during an active SARS-CoV-2 infection, depending on the scenario), and effective contact tracing and isolation, an epidemic rebound might be prevented. Assuming 68% of contacts could be traced, we estimate that 75% of individuals with symptomatic infection would need to be tested and positive cases isolated if schools return full-time in September, or 65% if a part-time rota system were used. If only 40% of contacts could be traced, these figures would increase to 87% and 75%, respectively. However, without these levels of testing and contact tracing, reopening of schools together with gradual relaxing of the lockdown measures are likely to induce a second wave that would peak in December, 2020, if schools open full-time in September, and in February, 2021, if a part-time rota system were adopted. In either case, the second wave would result in R rising above 1 and a resulting second wave of infections 2·0–2·3 times the size of the original COVID-19 wave. When infectiousness of children and young adults was varied from 100% to 50% of that of older ages, we still found that a comprehensive and effective test–trace–isolate strategy would be r...
The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim (COVID-19 Agent-based Simulator), an open-source model developed to help address these questions. Covasim includes country-specific demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, long-term care facilities, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility. Covasim also supports an extensive set of interventions, including non-pharmaceutical interventions, such as physical distancing and protective equipment; pharmaceutical interventions, including vaccination; and testing interventions, such as symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and other factors. Implemented in pure Python, Covasim has been designed with equal emphasis on performance, ease of use, and flexibility: realistic and highly customized scenarios can be run on a standard laptop in under a minute. In collaboration with local health agencies and policymakers, Covasim has already been applied to examine epidemic dynamics and inform policy decisions in more than a dozen countries in Africa, Asia-Pacific, Europe, and North America.
The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim , an open-source model developed to help address these questions. Covasim includes demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility. Covasim also supports an extensive set of interventions, including non-pharmaceutical interventions, such as physical distancing, hygiene measures, and protective equipment; and testing interventions, such as symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and other factors. In collaboration with local health agencies and policymakers, Covasim has already been applied to examine disease dynamics and policy options in Africa, Europe, Oceania, and North America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.