The potential to differentiate human embryonic stem cells (hESCs) in vitro to provide an unlimited source of human hepatocytes for use in biomedical research, drug discovery, and the treatment of liver diseases holds great promise. Here we describe a three-stage process for the efficient and reproducible differentiation of hESCs to hepatocytes by priming hESCs towards definitive endoderm with activin A and sodium butyrate prior to further differentiation to hepatocytes with dimethyl sulfoxide, followed by maturation with hepatocyte growth factor and oncostatin M. We have demonstrated that differentiation of hESCs in this process recapitulates liver development in vivo: following initial differentiation, hESCs transiently express characteristic markers of the primitive streak mesendoderm before turning to the markers of the definitive endoderm; with further differentiation, expression of hepatocyte progenitor cell markers and mature hepatocyte markers emerged sequentially. Furthermore, we have provided evidence that the hESCderived hepatocytes are able to carry out a range of hepatocyte functions: storage of glycogen, and generation and secretion of plasma proteins. More importantly, the hESC-derived hepatocytes express several members of cytochrome P450 isozymes, and these P450 isozymes are capable of converting the substrates to metabolites and respond to the chemical stimulation. Our results have provided evidence that hESCs can be differentiated efficiently in vitro to functional hepatocytes, which may be useful as an in vitro system for toxicity screening in drug discovery. STEM CELLS 2008;26:894 -902 Disclosure of potential conflicts of interest is found at the end of this article.
Ammonium perfluorooctanoate (APFO) is a processing aid in the production of fluoropolymers that has been shown to have a long half-life in human blood. To understand the potential toxicological response of primates, groups of male cynomolgus monkeys were given daily po (capsule) doses of either 0, 3, 10, or 30 (reduced to 20) mg/kg/day for 26 weeks. Two monkeys from each of the control and 10 mg/kg/day dose groups were observed for 90 days after the last dose. Clinical observations, clinical chemistry, determination of key hormones, gross and microscopic pathology, cell proliferation, peroxisomal proliferation, bile-acid determination, and serum and liver perfluorooctanoate (PFOA) concentrations were monitored. Toxicity, including weight loss and reduced food consumption, was noted early in the study at the 30 mg/kg/day dose; therefore, the dose was reduced to 20 mg/kg/day. The same signs of toxicity developed in 3 monkeys at 20 mg/kg/day, after which treatment of these monkeys was discontinued. One 30/20 mg/kg/day monkey developed the signs of toxicity noted above and a possible dosing injury, and this monkey was sacrificed in extremis on Day 29. A 3 mg/kg/day dose-group monkey was sacrificed in extremis on Day 137 for reasons not clearly related to APFO treatment. Dose-dependent increases in liver weight as a result of mitochondrial proliferation occurred in all APFO-treated groups. Histopathologic evidence of liver injury was not observed at either 3 or 10 mg/kg/day. Evidence of liver damage was seen in the monkey sacrificed in moribund condition at the highest dose. Body weights were decreased at 30/20 mg/kg. PFOA concentrations in serum and liver were highly variable, were not linearly proportional to dose, and cleared to background levels within 90 days after the last dose. A no observable effect level was not established in this study, and the low dose of 3 mg/kg/day was considered the lowest observable effect level based on increased liver weight and uncertainty as to the etiology leading to the moribund sacrifice of one low-dose monkey on Day 137. Other than those noted above, there were no APFO-related macroscopic or microscopic changes, changes in clinical chemistry, hormones, or urinalysis, or hematological effects. In particular, effects that have been associated with the development of pancreatic and testicular toxicity in rats were not observed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.